1765-93-1Relevant articles and documents
Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: Coordination and photo-induced oxidation
Kang, Juhye,Nam, Jung Seung,Lee, Hyuck Jin,Nam, Geewoo,Rhee, Hyun-Woo,Kwon, Tae-Hyuk,Lim, Mi Hee
, p. 6855 - 6862 (2019)
Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-β (Aβ) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aβ peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aβ isoforms, Aβ40 and Aβ42, as well as the production of toxic Aβ species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.
Automated iterative Csp 3–C bond formation
Ballmer, Steve G.,Blair, Daniel J.,Burke, Martin D.,Chitti, Sriyankari,Gill, Adrian L.,Gray, Danielle L.,Haley, Hannah M. S.,Hansen, Richard L.,Kostyra, David M.,Morehouse, Greg. F.,Mubayi, Vikram,Palazzolo Ray, Andrea M. E.,Pipal, Robert W.,Schmidt, Michael J.,Trobe, Melanie,Wang, Wesley,Woods, Toby J.
, p. 92 - 97 (2022/04/07)
Fully automated synthetic chemistry would substantially change the field by providing broad?on-demand?access to small molecules. However, the reactions that can be run autonomously are still limited. Automating the stereospecific assembly of Csp3–C bonds would expand access to many important types of?functional organic molecules1. Previously, methyliminodiacetic acid (MIDA) boronates were used to orchestrate the formation of Csp2–Csp2 bonds and were effective building blocks for automating the synthesis of many small molecules2, but they are incompatible with stereospecific Csp3–Csp2 and Csp3–Csp3 bond-forming reactions3–10. Here we report that hyperconjugative and steric tuning provide a new class of tetramethyl N-methyliminodiacetic acid (TIDA) boronates that are stable to these conditions. Charge density analysis11–13 revealed that redistribution of electron density increases covalency of the N–B bond and thereby attenuates its hydrolysis. Complementary steric shielding of carbonyl π-faces decreases reactivity towards nucleophilic reagents. The unique features of the iminodiacetic acid cage2, which are essential for generalized automated synthesis, are retained by TIDA boronates. This enabled Csp3 boronate building blocks to be assembled using automated synthesis, including the preparation of natural products through automated stereospecific Csp3–Csp2 and Csp3–Csp3 bond formation. These findings will enable increasingly complex Csp3-rich small molecules to be accessed via automated assembly.
Asymmetric 1,4-Addition of Arylboronic Acids to β,γ-Unsaturated α-Ketoesters using Heterogeneous Chiral Metal Nanoparticle Systems
Miyamura, Hiroyuki,Yasukawa, Tomohiro,Zhu, Zhiyuan,Kobayashi, Shū
supporting information, p. 353 - 359 (2019/12/15)
Asymmetric 1,4-addition reactions with β,γ-unsaturated α-ketoesters are valuable because the resulting chiral ketoester compounds can be converted into various useful species that are often used as chiral building blocks in drug and natural product synthesis. However, β,γ-unsaturated α-ketoesters have two reactive points in terms of nucleophilic additions, which will lead to the 1,4-adduct, the 1,2-adduct and to the combined 1,4- and 1,2-adduct. Therefore, controlling this chemoselectivity is an important factor for the development of these transformations. Here, we developed an asymmetric 1,4-addition of aryl boronic acids to β,γ-unsaturated α-ketoesters by using heterogeneous chiral rhodium nanoparticle systems with a chiral diene ligand bearing a secondary amide moiety. The newly developed polydimethylsilane-immobilized rhodium nanoparticle catalysts showed high activity, high chemoselectivity, and excellent enantioselectivity, and this is the first heterogeneous catalytic system for this asymmetric reaction. Metal nanoparticle catalysts were recovered and reused without loss of activity or leaching of metal. (Figure presented.).
Aryl boronic acid preparation method
-
Paragraph 0033-0036; 0040-0041, (2020/01/25)
The invention belongs to the technical field of fine chemical engineering, and relates to an aryl boronic acid preparation method. In the prior art, aryl boronic acid as a novel safe and environmentally-friendly arylation reagent is widely used in scientific research and production of various fine chemicals containing aryl structures in the fields of medicines, pesticides, advanced materials and the like; and the aryl boronic acid compound preparation method reported in the disclosed literature has problems of harsh reaction conditions and high cost. A purpose of the invention is to provide amethod, wherein an aryl boron compound is formed by carrying out a reaction on a Grignard reagent and trialkyl borate under mild conditions, the composition of the aryl boron compound is converted from the main component diaryl borate into the main component aryl borate, and the aryl borate is hydrolyzed to obtain aryl boric acid, so that the preparation cost of the acyl aryl boric acid compound can be remarkably reduced, and the method has good practical application prospect.
Transition-Metal-Free Borylation of Aryl Bromide Using a Simple Diboron Source
Han, Min Su,Lim, Taeho,Ryoo, Jeong Yup
, p. 10966 - 10972 (2020/09/23)
In this study, we developed a simple transition-metal-free borylation reaction of aryl bromides. Bis-boronic acid (BBA), was used, and the borylation reaction was performed using a simple procedure at a mild temperature. Under mild conditions, aryl bromides were converted to arylboronic acids directly without any deprotection steps and purified by conversion to trifluoroborate salts. The functional group tolerance was considerably high. The mechanism study suggested that this borylation reaction proceeds via a radical pathway.
IRIDIUM COMPLEX, COMPOSITION HAVING THE SAME, AND USE THEREOF
-
Paragraph 0090-0092, (2020/04/16)
The present invention relates to an iridium complex which is a compound represented by chemical formula 1, a composition comprising an iridium complex, and uses thereof. In the chemical formula 1, R^1 to R^8, and A are as defined in claim 1. The present invention can provide the iridium complex that can be effectively applied to the regulation of amyloid beta peptide aggregation.(AA) [Strategy 1] Inhibition(BB) [Strategy 2] OxidationCOPYRIGHT KIPO 2020
Magnesium promoted autocatalytic dehydrogenation of amine borane complexes: A reliable, non-cryogenic, scalable access to boronic acids
Marciasini, Ludovic D.,Richard, Jimmy,Cacciuttolo, Bastien,Sartori, Guillaume,Birepinte, Melodie,Chabaud, Laurent,Pinet, Sandra,Pucheault, Mathieu
, p. 164 - 171 (2018/12/05)
Owing to the unusual reactivity of dialkylamine-borane complexes, a methodology was developed to simply access boronic acids. The intrinsic instability of magnesium aminoborohydride was tweaked into a tandem dehydrogenation borylation sequence. Proceeding via an autocatalytic cycle, amineborane dehydrogenation was induced by a variety of Grignard reagents. Overall, addition of the organomagnesium species onto specially designed dialkylamine-borane complexes led to a variety of boronic acids in high yields. In addition, the reaction can be performed under Barbier conditions, on a large scale.
An efficient method for the hydrolysis of potassium organotrifluoroborates promoted by montmorillonite K10
Silva, Renato L.,Santos, Cosme S.,Santos, Jonh A. M.,Oliveira, Roberta A.,Menezes, Paulo H.,Freitas, Juliano C. R.
, p. 1777 - 1785 (2018/09/04)
An efficient and non-expensive method for conversion of diverse potassium organotrifluoroborates to their corresponding boronic acids promoted by montmorillonite K10 using water as the reaction solvent is described. Further interconversion of potassium organotrifluoroborates to their corresponding boronic esters, via boronic acid intermediates was also successfully accomplished. The products were obtained in good yields, being the rate of hydrolysis influenced by the type of substituent present in the boronic acid.
Copper-Catalyzed Monoorganylation of Trialkyl Borates with Functionalized Organozinc Pivalates
Fu, Ying,Gou, Bei-Lei,Shi, Chun-Zhao,Du, Zhengyin,Shen, Tong
, p. 4253 - 4257 (2018/09/18)
Organozinc pivalates, a recently developed air- and moisture-stable organozinc species, were found for the first time as excellent organometallic species in the monoorganylation of trialkyl borates whereby boronic acids were prepared in high yields. The significant advantage of organozinc pivalates over another previously employed organometallic reagents, e. g., organolithium reagents, Grignard reagents and organozinc halides, is that the generation of multiorganylation byproducts such as borinic acids and trialkylboranes were completely suppressed. Additionally, the in situ generated boronates could be directly arranged into Suzuki-Miyaura type cross-coupling reactions to produce biaryls in high yields.
Photoinduced Miyaura Borylation by a Rare-Earth-Metal Photoreductant: The Hexachlorocerate(III) Anion
Qiao, Yusen,Yang, Qiaomu,Schelter, Eric J.
supporting information, p. 10999 - 11003 (2018/07/31)
The first photoinduced carbon(sp2)–heteroatom bond forming reaction by a rare-earth-metal photoreductant, a Miyaura borylation, has been achieved. This simple, scalable, and novel borylation method that makes use of the hexachlorocerate(III) anion ([CeIIICl6]3?, derived from CeCl3) has a broad substrate scope and functional-group tolerance and can be conducted at room temperature. Combined with Suzuki–Miyaura cross-coupling, the method is applicable to the synthesis of various biaryl products, including through the use of aryl chloride substrates.