2033-89-8Relevant articles and documents
Synthesis of a Fluorescent-Labeled Bisbenzamidine Containing the Central (6,7-Dimethoxy-4-coumaryl)Alanine Building Block
H?ussler, Daniela,Gütschow, Michael
, p. 367 - 373 (2015)
The synthesis of an amino acid amide is reported, which contains two benzamidine cores, one placed in the amide part the other one within the sulfonyl N-capping group. The amino acid side chain bears the 6,7-dimethoxycoumarin fluorophore. The fluorescent amino acid was prepared by using the von-Pechmann reaction. The two corresponding nitrile groups of a precursor molecule were simultaneously converted to the amidine moieties by the Pinner reaction. The fluorescent properties of the final compound were determined.
Catalyst-free rapid conversion of arylboronic acids to phenols under green condition
Dong, Zhenhua,Liu, Mengmeng,Pan, Hongguo
, (2021/09/06)
A catalyst-free and solvent-free method for the oxidative hydroxylation of aryl boronic acids to corresponding phenols with hydrogen peroxide as the oxidizing agent was developed. The reactions could be performed under green condition at room temperature within very short reaction time. 99% yield of phenol could be achieved in only 1 min. A series of different arenes substituted aryl boronic acids were further carried out in the hydroxylation reaction with excellent yield. It was worth nothing that the reaction could completed within 1 min in all cases in the presence of ethanol as co-solvent.
The graphite-catalyzed: ipso -functionalization of arylboronic acids in an aqueous medium: metal-free access to phenols, anilines, nitroarenes, and haloarenes
Badgoti, Ranveer Singh,Dandia, Anshu,Parewa, Vijay,Rathore, Kuldeep S.,Saini, Pratibha,Sharma, Ruchi
, p. 18040 - 18049 (2021/05/29)
An efficient, metal-free, and sustainable strategy has been described for the ipso-functionalization of phenylboronic acids using air as an oxidant in an aqueous medium. A range of carbon materials has been tested as carbocatalysts. To our surprise, graphite was found to be the best catalyst in terms of the turnover frequency. A broad range of valuable substituted aromatic compounds, i.e., phenols, anilines, nitroarenes, and haloarenes, has been prepared via the functionalization of the C-B bond into C-N, C-O, and many other C-X bonds. The vital role of the aromatic π-conjugation system of graphite in this protocol has been established and was observed via numerous analytic techniques. The heterogeneous nature of graphite facilitates the high recyclability of the carbocatalyst. This effective and easy system provides a multipurpose approach for the production of valuable substituted aromatic compounds without using any metals, ligands, bases, or harsh oxidants.
Method for preparing alcohol and phenol through aerobic hydroxylation reaction of boric acid derivative in absence of photocatalyst
-
Paragraph 0025-0028; 0030-0032, (2020/01/25)
The invention discloses a method for preparing alcohol and phenol through aerobic hydroxylation reaction of a boric acid derivative in the absence of a photocatalyst, wherein the boric acid derivativeis aryl boronic acid or alkyl boronic acid, and the corresponding target compounds are respectively a phenol-based compound and an alcohol-based compound. According to the method, by using a boric acid derivative as a reaction substrate, an additive is added under a solvent condition, and a hydroxylation reaction is performed under aerobic and illumination conditions to obtain a corresponding target compound. According to the invention, the new strategy is provided for the synthesis of phenols through aerobic hydroxylation of aryl boronic acid without a photocatalyst; the catalyst-free aerobic hydroxylation method for photocatalysis of aryl boronic acid or alkyl boronic acid by using triethylamine as an additive is firstly disclosed; and the new method has advantages of photocatalyst-freecondition, wide substrate range and good functional group compatibility.
Oxidation of Electron-Rich Arenes Using HFIP-UHP System
Llopis, Natalia,Baeza, Alejandro
, p. 6159 - 6164 (2020/05/20)
The straightforward oxidation of electron-rich arenes, namely, phenols, naphthols, and anisole derivatives, under mild reaction conditions, is described by means of the use of an environmentally benign HFIP-UHP system. The corresponding quinones or hydroxylated arenes were obtained in moderate to good yields.
Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment
Cheng, Xi-Chuang,Guo, Xin-Ran,Liu, Hua-Min,Liu, Yu-Lan,Qin, Zhao,Wang, Xue-De
, p. 4348 - 4358 (2020/09/22)
Chinese quince fruits (Chaenomeles sinensis) have an abundance of lignins with antioxidant activities. To facilitate the utilization of Chinese quince fruits, lignin was isolated from it by auto-catalyzed ethanol organosolv pretreatment. The effects of three processing conditions (temperature, time, and ethanol concentration) on yield, structural features and antioxidant activities of the auto-catalyzed ethanol organosolv lignin samples were assessed individually. Results showed the pretreatment temperature was the most significant factor; it affected the molecular weight, S/G ratio, number of β-O-4′ linkages, thermal stability, and antioxidant activities of lignin samples. According to the GPC analyses, the molecular weight of lignin samples had a negative correlation with pretreatment temperature. 2D-HSQC NMR and Py-GC/MS results revealed that the S/G ratios of lignin samples increased with temperature, while total phenolic hydroxyl content of lignin samples decreased. The structural characterization clearly indicated that the various pretreatment conditions affected the structures of organosolv lignin, which further resulted in differences in the antioxidant activities of the lignin samples. These results can be helpful for controlling and optimizing delignification during auto-catalyzed ethanol organosolv pretreatment, and they provide theoretical support for the potential applications of Chinese quince fruits lignin as a natural antioxidant in the food industry.
Development of a Cross-Conjugated Vinylogous [4+2] Anionic Annulation and Application to the Total Synthesis of Natural Antibiotic (±)-ABX
Huang, Jing-Kai,Shia, Kak-Shan
supporting information, p. 6540 - 6545 (2020/03/03)
The cross-conjugated vinylogous [4+2] anionic annulation has been newly developed, the cascade process of which has a high preference for regiochemical control and chemoselectivity, giving rise to exclusively Michael-type adducts in moderate to high yields (up to 94 %, 35 examples). By making use of this approach as a key operation, the first total synthesis of natural antibiotic ABX, in racemic form, has been successfully achieved in a concise 7-step sequence with an overall yield of about 20 %.
Nickel-catalyzed oxidative hydroxylation of arylboronic acid: Ni(HBTC)BPY MOF as an efficient and ligand-free catalyst to access phenolic motifs
Latha, Ganesapandian,Devarajan, Nainamalai,Karthik, Murugan,Suresh, Palaniswamy
, (2020/01/08)
A straightforward and mild oxidative ipso-hydroxylation of arylboronic acids has been achieved using a simple and non-noble metal, nickel-based reusable heterogeneous catalyst Ni(HBTC)BPY MOF (HBTC = benzene-1,3,5-tricarboxylate, BPY = 4,4′-bipyridine) in the presence of benign hydrogen peroxide as an oxidant under ambient reaction condition. The Ni(HBTC)BPY MOF exhibits excellent catalytic activity towards the formation of phenols from diverse arylboronic acids within short time and can be reused up to five times without any notable loss in its activity as well as shown high functional group tolerance even in the presence of sensitive functionalities and useful to achieve hydroxyl group in heterocycles.
Phthalocyanine Zinc-catalyzed Hydroxylation of Aryl Boronic Acids under Visible Light
Luo, Dong-Ping,Huang, Yang-Feng,Hong, Xiao-Yi,Chen, Dingben,Li, Guo-Xing,Huang, Xiao-Bo,Gao, Wen-Xia,Liu, Miao-Chang,Zhou, Yun-Bing,Wu, Hua-Yue
supporting information, p. 961 - 964 (2019/01/25)
A visible-light-promoted aerobic oxidative hydroxylation of boronic acids using phthalocyanine zinc as an easily available photosensitizer has been developed. It provided a direct access to synthesize aliphatic alcohols and phenols from boronic acids. The advantages of this approach included the low catalyst loading (0.5 mol%), high efficient, the use of O2 as an oxygen source, wide substrate range, the simple operational process, and mild conditions. (Figure presented.).
Room-Temperature Ionic Liquids (RTILs) as Green Media for Metal- and Base-Free ipso -Hydroxylation of Arylboronic Acids
Kim, Seung-Hoi,Kwon, Gyu-Tae,Shin, Eun-Jae
supporting information, p. 1815 - 1819 (2019/09/09)
The oxidative hydroxylation of arylboronic acids to the corresponding phenolic compounds under metal- and base-free aerobic conditions is successfully demonstrated on a greener media. Hydrogen peroxide, as an eco-friendly oxidant, is compatible with green mediates room-temperature ionic liquids (RTIL)s, providing hydroxylation products of arylboronic acids in an efficient manner. The RTIL support is particularly interesting for its reusability.