2150-37-0Relevant articles and documents
Molecular modeling studies and: In vitro screening of dihydrorugosaflavonoid and its derivatives against Mycobacterium tuberculosis
Puranik, Ninad V.,Srivastava, Pratibha,Swami, Sagar,Choudhari, Amit,Sarkar, Dhiman
, p. 10634 - 10643 (2018)
Novel drug regimens against tuberculosis (TB) are urgently needed and may be developed by targeting essential enzymes of Mtb that sustain the pathogenicity of tuberculosis. In the present investigation, series of compounds (5a-f and 6a-f) based on a naturally occurring rugosaflavonoid moiety were evaluated by in silico molecular modeling studies against β-ketoacyl-ACP reductase (MabA) (PDB ID: IUZN) and pantothenate kinase (PanK) (PDB ID: 3AF3). Compounds 5a, 5c, 5d, and 6c, which had docking scores of -8.29, -8.36, -8.17 and -7.39 kcal mol-1, respectively, displayed interactions with MabA that were better than those of isoniazid (-6.81 kcal mol-1). Similarly, compounds 5a, 5c, 5d, and 6c, which had docking scores of -7.55, -7.64, -7.40 and -6.7 kcal mol-1, respectively, displayed interactions with PanK that were comparable to those of isoniazid (-7.64 kcal mol-1). Because of their docking scores, these compounds were screened in vitro against Mycobacterium tuberculosis H37Ra (Mtb) using an XRMA protocol. Among the screened compounds, the dihydrorugosaflavonoid derivatives 5a, 5c, and 5d had IC50 values of 12.93, 8.43 and 11.3 μg mL-1, respectively, and exhibited better inhibitory activity than the parent rugosaflavonoid derivatives. The rugosaflavonoid derivative 6c had an IC50 value of 17.57 μg mL-1. The synthesized compounds also displayed inhibitory activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus. The present study will be helpful for the further development of these molecules into antitubercular lead candidates.
Synthesis of cannabinol by a modified Ullmann-ziegler cross-coupling
Nüllen, Max P.,G?ttlich, Richard
, p. 1109 - 1112 (2013)
Cannabinol, a pharmaceutically interesting component of cannabis, was prepared by a modified Ullmann-Ziegler cross-coupling. Using easily obtainable starting materials, this convergent approach allows facile access to a variety of cannabinol derivatives. Georg Thieme Verlag Stuttgart New York.
Synthesis of [6,6,m]-Tricyclic Compounds via [4+2] Cycloaddition with Au or Cu Catalyst
Kang, Juyeon,Ham, Seunghwan,Seong, Chaehyeon,Oh, Chang Ho
supporting information, p. 1039 - 1043 (2021/05/05)
We synthesized [6,6,6]- and [6,6,7]-tricyclic compounds via intramolecular [4+2] cycloaddition by gold or copper catalysts. Substrates for cyclization were prepared by coupling reactions between eight types of diyne and four types of aromatic moieties. We have successfully synthesized eleven tricyclic compounds.
Investigations on the Photochemical Reaction Mechanisms of Selected Dibenzoylmethane Compounds
Wang, Junxiao,Guo, Yan,Wang, Jialin,Ma, Jiani
supporting information, p. 7594 - 7602 (2021/06/21)
In this work, combined time-resolved spectroscopies of femtosecond transient absorption, nanosecond transient absorption, and DFT calculations were performed to unravel the photocyclization reaction mechanisms of selected dibenzoylmethane (DBM) derivatives, including 2-chloro-1,3-diphenylpropan-1,3-dione (1a), 2-chloro-1-(3,5-dimethoxyphenyl)-3-phenylpropan-1,3-dione (1b), 2-chloro-2-fluoro-1,3-diphenylpropan-1,3-dione (1c), and 2-chloro-2-fluoro-1,3-di(4-methoxyphenyl)propan-1,3-dione (1d). Photocyclization reaction mechanisms for 1a and 1b are similar, where a C-Cl heterolysis occurs yielding an α-ketocation intermediate, followed by cyclization to generate the cation species. On the other hand, 1c and 1d undergo dechlorination primarily producing a radical species, which further experiences cyclization yielding cyclized radical species. The dominant factor leading to the different reaction mechanisms is the involvement of a fluorine atom bonded at α-C. Due to the meta-effect, the p-methoxy substitution on the benzene ring inhibits the photocyclization reaction and reduces the yield of photocyclization.
Polyhydroxybenzoic acid derivatives as potential new antimalarial agents
Degotte, Gilles,Francotte, Pierre,Pirotte, Bernard,Frédérich, Michel
, (2021/08/07)
With more than 200 million cases and 400,000 related deaths, malaria remains one of the deadliest infectious diseases of 2021. Unfortunately, despite the availability of efficient treatments, we have observed an increase in people infected with malaria since 2015 (from 211 million in 2015 to 229 million in 2019). This trend could partially be due to the development of resistance to all the current drugs. Therefore, there is an urgent need for new alternatives. We have, thus, selected common natural scaffolds, polyhydroxybenzoic acids, and synthesized a library of derivatives to better understand the structure–activity relationships explaining their antiplasmodial effect. Only gallic acid derivatives showed a noticeable potential for further developments. Indeed, they showed a selective inhibitory effect on Plasmodium (IC50 ~20 μM, SI > 5) often associated with interesting water solubility. Moreover, this has confirmed the critical importance of free phenolic functions (pyrogallol moiety) for the antimalarial effect. Methyl 4-benzoxy-3,5-dihydroxybenzoate (39) has, for the first time, been recognized as a potential lead for future research because of its marked inhibitory activity against Plasmodium falciparum and its significant hydrosolubility (3.72 mM).
ANTIVIRAL COMPOUNDS AND THEIR USE
-
Paragraph 0081, (2021/04/10)
The invention relates to compounds that have antiviral activity, particularly 4-oxochromane derivatives that have antiviral activity against viruses of the Family Flaviviridae. Methods of treating viruses with the 4-oxochromane compounds, particularly viruses of the Family Flaviviridae, are also described.
Palladium-Catalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide
Bismuto, Alessandro,Boehm, Philip,Morandi, Bill,Roediger, Sven
supporting information, p. 17887 - 17896 (2020/08/19)
An efficient palladium-catalyzed chlorocarbonylation of aryl (pseudo)halides that gives access to a wide range of carboxylic acid derivatives has been developed. The use of butyryl chloride as a combined CO and Cl source eludes the need for toxic, gaseous carbon monoxide, thus facilitating the synthesis of high-value products from readily available aryl (pseudo)halides. The combination of palladium(0), Xantphos, and an amine base is essential to promote this broadly applicable catalytic reaction. Overall, this reaction provides access to a great variety of carbonyl-containing products through in situ transformation of the generated aroyl chloride. Combined experimental and computational studies support a reaction mechanism involving in situ generation of CO.
Synthesis of Some Aromatic and Aliphatic Esters Using WO3/ZrO2 Solid Acid Catalyst under Solvent Free Conditions
Guguloth, Vijaya Charan,Battu, Satyanarayana
, p. 2153 - 2157 (2020/09/16)
A simple method is delineated for the synthesis of substituted ester products in superior yields by esterification reaction under solvent unbound condition using tungsten upgraded ZrO2 solid acid catalyst at 353 K. The WO3/ZrO2 catalyst has been prepared by using impregnation method followed by calcination at 923 K over a period of 6 h in air atmosphere. SEM, XRD, FTIR, and BET surface area techniques were used to categorize this catalyst. Zirconia has both acidic and basic possessions which can be changed by incorporating suitable promoter atom like tungsten which in turn increases the surface area thereby enhancing the surface acidity. Impregnation of W6+ ions exhibits a strong influence on phase modification of zirconia from thermodynamically solid monoclinic to metastable tetragonal phase. Amalgamation of promoter W6+ will stabilize tetragonal phase which is active in catalyzing reactions. In esterification reaction WO3/ZrO2 catalyst was found to be stable, efficient and environmental friendly, effortlessly recovered by filtration, excellent yield of product and can be reusable efficiently.
Palladium-Catalyzed, Copper(I)-Promoted Methoxycarbonylation of Arylboronic Acids with O-Methyl S-Aryl Thiocarbonates
Cao, Ya-Fang,Li, Ling-Jun,Liu, Min,Xu, Hui,Dai, Hui-Xiong
, p. 4475 - 4481 (2020/04/10)
Here, we report O-methyl S-aryl thiocarbonates as a versatile esterification reagent for palladium-catalyzed methoxycarbonylation of arylboronic acid in the presence of copper(I) thiophene-2-carboxylate (CuTC). The reaction condition is mild, and a variety of substituents including sensitive-Cl,-Br, and free-NH2 could be tolerated. Further applications in the late-stage esterification of some pharmaceutical drugs demonstrate the broad utility of this method.
Nickel-Catalyzed Esterification of Amides Under Mild Conditions
Li, Jun-Fei,Wang, Yao-Fang,Wu, Yuan-Yuan,Liu, Wen-Jing,Wang, Jun-Wen
, p. 874 - 880 (2019/11/13)
Abstract: The use of ligands to adjust the catalytic activity of the catalyst for esterification of amides is challenge in organic chemistry. In this paper, Nickel(II)-NHC-catalyzed the esterification reaction between N,N-di-Boc amide and alcohols at room temperature have been demonstrated. The imidazolium salt bearing a hydroxyl functionalized side arm showed high effective catalytic activity in the activation of the amide N–C bond in air atmosphere. Graphic Abstract: [Figure not available: see fulltext.].