2880-89-9Relevant articles and documents
An efficient synthetic approach to 6,5′-(S)- and 6,5′-(R)- cyclouridine
Theile, Christopher S.,McLaughlin, Larry W.
, p. 5587 - 5589 (2012)
Here we present new routes for the efficient syntheses of 6,5′-(S)- and 6,5′-(R)-cyclouridine. The syntheses utilize readily accessible uridine as a starting material. This route to the R diastereomer is significantly more efficient than previous synthetic efforts, allowing us to obtain large amounts of pure material for future biological testing.
Use of nucleoside phosphorylases for the preparation of 5-modified pyrimidine ribonucleosides
Alexeev, Cyril S.,Drenichev, Mikhail S.,Dorinova, Evgeniya O.,Esipov, Roman S.,Kulikova, Irina V.,Mikhailov, Sergey N.
, (2019/11/13)
Enzymatic transglycosylation, a transfer of the carbohydrate moiety from one heterocyclic base to another, is catalyzed by nucleoside phosphorylases (NPs) and is being actively developed and applied for the synthesis of biologically important nucleosides. Here, we report an efficient one-step synthesis of 5-substitited pyrimidine ribonucleosides starting from 7-methylguanosine hydroiodide in the presence of nucleoside phosphorylases (NPs).
Direct One-Pot Synthesis of Nucleosides from Unprotected or 5-O-Monoprotected d -Ribose
Downey, A. Michael,Richter, Celin,Pohl, Radek,Mahrwald, Rainer,Hocek, Michal
supporting information, p. 4604 - 4607 (2015/09/28)
New, improved methods to access nucleosides are of general interest not only to organic chemists but to the greater scientific community as a whole due their key implications in life and disease. Current synthetic methods involve multistep procedures employing protected sugars in the glycosylation of nucleobases. Using modified Mitsunobu conditions, we report on the first direct glycosylation of purine and pyrimidine nucleobases with unprotected d-ribose to provide β-pyranosyl nucleosides and a one-pot strategy to yield β-furanosides from the heterocycle and 5-O-monoprotected d-ribose.
In search of flavivirus inhibitors: Evaluation of different tritylated nucleoside analogues
Chatelain, Grégory,Debing, Yannick,De Burghgraeve, Tine,Zmurko, Joanna,Saudi, Milind,Rozenski, Jef,Neyts, Johan,Van Aerschot, Arthur
, p. 249 - 255 (2013/10/01)
Following up on a hit that was identified in a large scale cell-based antiviral screening effort, a series of triphenylmethyl alkylated nucleoside analogues were synthesized and evaluated for their in vitro antiviral activities against the dengue virus (DENV) and the yellow fever virus (YFV). Hereto, trityl moieties were attached at various positions of the sugar ring combined with subtle variations of the heterocyclic base. Several triphenylmethyl modified nucleosides were uncovered being endowed with submicromolar in vitro antiviral activity against the YFV. The most selective inhibitor in this series was 3′,5′-bis-O-tritylated-5-chlorouridine (1b) affording a selectivity index of over 90, whereas the 3′,5′-bis-O-tritylated inosine congener (5b) displayed the highest activity, but proved more toxic. The finding of these lipophilic structures being endowed with high antiviral activity for flaviviruses, should stimulate the interest for further structureeactivity research.
Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation
Parmenopoulou, Vanessa,Chatzileontiadou, Demetra S.M.,Manta, Stella,Bougiatioti, Stamatina,Maragozidis, Panagiotis,Gkaragkouni, Dimitra-Niki,Kaffesaki, Eleni,Kantsadi, Anastassia L.,Skamnaki, Vassiliki T.,Zographos, Spyridon E.,Zounpoulakis, Panagiotis,Balatsos, Nikolaos A.A.,Komiotis, Dimitris,Leonidas, Demetres D.
, p. 7184 - 7193 (2013/01/15)
Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low μM inhibition constant (Ki) values with the ones having a triazolo linker being more potent than the ones without. The most potent of these is 1-[(β-d-ribofuranosyl)-1,2,3-triazol-4-yl]uracil being with Ki = 1.6 μM. The high resolution X-ray crystal structures of the RNase A in complex with three most potent inhibitors of these inhibitors have shown that they bind at the enzyme catalytic cleft with the pyrimidine nucleobase at the B1 subsite while the triazole moiety binds at the main subsite P1, where P-O5′ bond cleavage occurs, and the ribose at the interface between subsites P1 and P0 exploiting interactions with residues from both subsites. The effect of a susbsituent group at the 5-pyrimidine position at the inhibitory potency has been also examined and results show that any addition at this position leads to a less efficient inhibitor. Comparative structural analysis of these RNase A complexes with other similar RNase A - ligand complexes reveals that the triazole moiety interactions with the protein form the structural basis of their increased potency. The insertion of a triazole linker between the pyrimidine base and the ribose forms the starting point for further improvement of these inhibitors in the quest for potent ribonucleolytic inhibitors with pharmaceutical potential.
Ionic liquid mediated synthesis of 5-halouracil nucleosides: Key precursors for potential antiviral drugs
Kumar, Vineet,Malhotra, Sanjay V.
experimental part, p. 821 - 834 (2010/08/20)
Synthesis of antiviral 5-halouracil nucleosides, also used as key precursors for the synthesis of other potential antiviral drugs, has been demonstrated using ionic liquids as convenient and efficient reaction medium.
Highly efficient method for C-5 halogenation of pyrimidine-based nucleosides in ionic liquids
Kumar, Vineet,Yap, Jeremy,Muroyama, Andrew,Malhotra, Sanjay V.
experimental part, p. 3957 - 3962 (2010/03/26)
A novel, highly efficient, convenient, and benign methodology for C-5 halogenation of pyrimidine-based nucleosides has been developed using N-halosuccinimides as halogenating reagents without using any catalyst in ionic liquid medium. The ionic liquids were successfully recovered and reused for all the reactions. Georg Thieme Verlag Stuttgart.
Anti-HCV nucleoside derivatives
-
, (2008/06/13)
The present invention comprises novel and known purine and pyrimidine nucleoside derivatives which have been discovered to be active against hepatitis C virus (HCV). The use of these derivatives for the treatment of HCV infection is claimed as are the novel nucleoside derivatives disclosed herein.
Lipid esters of nucleoside monophosphates and their use as immunosuppressive drugs
-
, (2008/06/13)
The present invention is directed to new nucleoside monophosphate derivatives of lipid ester residues of general formula (I) wherein R1 represents an optionally substituted alkyl chain having 1-20 carbon atoms; R2 represents hydrogen, an optionally substituted alkyl chain having 1-20 carbon atoms; R3, R4 and R5 represent hydrogen, hydroxy, azido, amino, cyano, or halogen; X represents a valence dash, oxygen, sulfur, a sulfinyl or sulfonyl group; Y represents a valence dash, an oxygen or sulfur atom; B represents a purine and/or pyrimidine base; with the proviso that at least one of the residues R3 or R5 is hydrogen; to their tautomers and their physiologically acceptable salts of inorganic and organic acids and/or bases, as well as to processes for their preparation, and to drugs containing said compounds.
A mild and efficient methodology for the synthesis of 5-halogeno uracil nucleosides that occurs via a 5-halogeno-6-azido-5,6-dihydro intermediate
Kumar,Wiebe,Knaus
, p. 2005 - 2010 (2007/10/02)
A mild and efficient methodology for the synthesis of 5-halogeno (iodo, bromo, or chloro) uracil nucleosides has been developed. 5-Halo-2'-deoxyuridines 4a-c (84-95%), 5-halouridines 7a-c (45-95%), and 5-haloarabinouridines 8a-c (65-95%) were synthesized in good to excellent yields by the reaction of 2'-deoxyuridine (2), uridine (5) and arabinouridine (6), respectively with iodine monochloride, or N-bromo (or chloro)succinimide, and sodium azide at 25-45°C. These C-5 halogenation reactions proceed via a 5-halo-6-azido-5,6-dihydro intermediate (3), from which HN3 is eliminated, to yield the 5-halogeno uracil nucleoside. The 5-halo-6-azido-5,6-dihydro intermediate products (10a, 10b) could be isolated from the reaction of 3',5'-di-O-acetyl-2'-deoxyuridine (9) with iodine monochloride or N-bromosuccinimide and sodium azide at 0°C. The isolation of 10a, 10b indicates that the C-5 halogenation reaction proceeds via a 5-halo-6-azido-5,6-dihydro intermediate.