330-84-7Relevant articles and documents
Quinoline Ligands Improve the Classic Direct C?H Functionalisation/Intramolecular Cyclisation of Diaryl Ethers to Dibenzofurans
Mackey, Katrina,Jones, David J.,Pardo, Leticia M.,McGlacken, Gerard P.
supporting information, p. 495 - 498 (2021/01/12)
The C?H functionalisation approach to the synthesis of dibenzofurans is hampered by a number of problems. Herein we describe the evolution of a cheap, bench stable quinoline ligand, which obviates most of the current limitations and allows for a high yielding synthesis of a range of valuable dibenzofurans. Dibenzofurans are important motifs in natural products and compounds with wide biological activity.
Fluorinations of unsymmetrical diaryliodonium salts containing: Ortho -sidearms; Influence of sidearm on selectivity
Abudken, Ahmed M. H.,Hope, Eric G.,Singh, Kuldip,Stuart, Alison M.
, p. 6140 - 6146 (2020/10/30)
Activated aromatics were reacted with two different fluoroidoane reagents 1 and 2 in the presence of triflic acid to prepare only the para-substituted diaryliodonium salts. With fluoroiodane 1 the unsymmetrical diaryliodonium salts contained an ortho-propan-2-ol sidearm, whereas the alcohol sidearm was eliminated to form an ortho-styrene sidearm in the reaction with fluoroiodane 2. Only the diaryliodonium salts containing a styrene sidearm were fluorinated successfully to deliver para-fluorinated aromatics in good yields.
Recyclable synthesis of mesityl iodonium(III) salts
Dohi, Toshifumi,Hayashi, Takumi,Ueda, Shohei,Shoji, Toshitaka,Komiyama, Keina,Takeuchi, Hitoshi,Kita, Yasuyuki
, p. 3617 - 3627 (2019/05/27)
An efficient protocol for C–H condensation of hypervalent iodine compounds toward arenes in fluoroalcohols has been applied to the recyclable preparation of mesityl iodonium(III) salts. The electrophilicities of [hydroxy(tosyloxy)iodo]mesitylene (MesI(OH)OTs) and iodomesitylene diacetate (MesI(OAc)2) are suitably enhanced in 2,2,2-trifluoroethanol. A series of nucleophilic aromatic compounds react smoothly with MesI(OH)OTs and MesI(OAc)2 or in situ hypervalent iodine(III) species, generated from iodomesitylene, to provide the target mesityl iodonium(III) salts in good yields at room temperature with broad functional group tolerance. This C–H condensation strategy merits high para-regioselectivities during the diaryliodonium(III) salt formation, but the major limitation in the case of low-reactive aromatic substrates is byproduct formation resulting from the self-condensation of the nucleophilic mesitylene ring in MesI(OH)OTs and MesI(OAc)2.
Reactions of Arylsulfonate Electrophiles with NMe4F: Mechanistic Insight, Reactivity, and Scope
Schimler, Sydonie D.,Froese, Robert D. J.,Bland, Douglas C.,Sanford, Melanie S.
, p. 11178 - 11190 (2018/09/12)
This paper describes a detailed study of the deoxyfluorination of aryl fluorosulfonates with tetramethylammonium fluoride (NMe4F) and ultimately identifies other sulfonate electrophiles that participate in this transformation. 19F NMR spectroscopic monitoring of the deoxyfluorination of aryl fluorosulfonates revealed the rapid formation of diaryl sulfates under the reaction conditions. These intermediates can proceed to fluorinated products; however, diaryl sulfate derivatives bearing electron-donating substituents react very slowly with NMe4F. Based on these findings, aryl triflate and aryl nonaflate derivatives were explored, since these cannot react to form diaryl sulfates. Aryl triflates were found to be particularly effective electrophiles for deoxyfluorination with NMe4F, and certain derivatives (i.e., those bearing electron-neutral/donating substituents) afforded higher yields than their aryl fluorosulfonate counterparts. Computational studies implicate a similar mechanism for deoxyfluorination of all the sulfonate electrophiles.
Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates
Schimler, Sydonie D.,Cismesia, Megan A.,Hanley, Patrick S.,Froese, Robert D.J.,Jansma, Matthew J.,Bland, Douglas C.,Sanford, Melanie S.
supporting information, p. 1452 - 1455 (2017/02/10)
This report describes a method for the deoxyfluorination of phenols with sulfuryl fluoride (SO2F2) and tetramethylammonium fluoride (NMe4F) via aryl fluorosulfonate (ArOFs) intermediates. We first demonstrate that the reaction of ArOFs with NMe4F proceeds under mild conditions (often at room temperature) to afford a broad range of electronically diverse and functional group-rich aryl fluoride products. This transformation was then translated to a one-pot conversion of phenols to aryl fluorides using the combination of SO2F2 and NMe4F. Ab initio calculations suggest that carbon-fluorine bond formation proceeds via a concerted transition state rather than a discrete Meisenheimer intermediate.
METHOD FOR AROMATIC FLUORINATION
-
Paragraph 0051; 0052, (2017/12/18)
Disclosed is a fluorination method comprising providing an aryl fluorosuifonate and a fluorinating reagent to a reaction mixture; and reacting the aryl fluorosuifonate and the fluorinating reagent to provide a fluorinated aryl species. Also disclosed is a fluorination method comprising providing, a salt comprising a cation and an aryloxyiate, and SO2F2 to a reaction mixture; reacting the SO2F2 and the ammonium salt to provide a fluorinated aryl species. Further disclosed a fluorination method comprising providing a compound having the structure Ar-OH to a reaction mixture; where A is an aryl or heteroaryl; providing SO2F2 to the reaction mixture; providing a fluorinating reagent to the reaction mixture; reacting the SO2F2, the fluorinating reagent and the compound having the structure Ar-OH to provide a fluorinated aryl species having the structure Ar-F.
Modular Synthesis of Arylacetic Acid Esters, Thioesters, and Amides from Aryl Ethers via Rh(II)-Catalyzed Diazo Arylation
Best, Daniel,Jean, Micka?l,Van De Weghe, Pierre
, p. 7760 - 7770 (2016/09/12)
One-pot formation of arylacetic acid esters, thioesters, and amides via Rh(II)-catalyzed arylation of a Meldrum's acid-derived diazo reagent with electron-rich arenes is described. The methodology was used to efficiently synthesize an anticancer compound.
Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: An efficient and reusable catalyst for O-arylation reaction
Puthiaraj, Pillaiyar,Ahn, Wha-Seung
, p. 1701 - 1709 (2016/04/05)
Copper nanoparticles were supported on a microporous covalent triazine polymer prepared by the Friedel-Crafts reaction (Cu@MCTP-1). The resulting material was characterized by powder X-ray diffraction, thermogravimetric analysis, N2 adsorption-desorption isotherms at 77 K, transmission electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy, and Cu particles with an average size of 3.0 nm and a BET total surface area of ca. 1002 m2 g-1 were obtained. Cu@MCTP-1 was evaluated as a heterogeneous catalyst for the Ullmann coupling of O-arylation over a series of aryl halides and phenols without employing expensive ligands or inert atmosphere, which produced an excellent yield of the corresponding diaryl ethers. The catalyst could be recovered by simple centrifugation and was reusable at least five times with only a slight decrease in catalytic activity.
PHOTOREDOX-CATALYZED DIRECT C-H FUNCTIONALIZATION OF ARENES
-
Paragraph 00388, (2017/01/31)
The invention generally relates to methods of making substituted arenes via direct C-H amination. More specifically, methods of making para- and ortho-substituted arenes via direct C-H amination are disclosed. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Visible-light-mediated synthesis of diaryl ethers from arylboronic acids and diaryliodonium salts
Liu, Li,Tang, Jiaqi,Qiang, Jian,Li, Jian,He, Mingyang
, p. 261 - 264 (2016/07/06)
With visible-light irradiation, a simple and metal-free photocatalytic system for the synthesis of diaryl ethers from arylboronic acids and diaryliodonium salts has been developed. The reaction proceeded in high yield for a range of different substrates in the presence of eosin Y under mild reaction conditions.