34443-04-4Relevant articles and documents
Improved reagents for newborn screening of mucopolysaccharidosis types I, II, and VI by tandem mass spectrometry
Chennamaneni, Naveen Kumar,Kumar, Arun Babu,Barcenas, Mariana,Spacil, Zdenek,Scott, C. Ronald,Turecek, Frantisek,Gelb, Michael H.
, p. 4508 - 4514 (2014/05/20)
Tandem mass spectrometry for the multiplex and quantitative analysis of enzyme activities in dried blood spots on newborn screening cards has emerged as a powerful technique for early assessment of lysosomal storage diseases. Here we report the design and process-scale synthesis of substrates for the enzymes α-l-iduronidase, iduronate-2-sulfatase, and N-acetylgalactosamine-4- sulfatase that are used for newborn screening of mucopolysaccharidosis types I, II, and VI. The products contain a bisamide unit that is hypothesized to readily protonate in the gas phase, which improves detection sensitivity by tandem mass spectrometry. The products contain a benzoyl group, which provides a useful site for inexpensive deuteration, thus facilitating the preparation of internal standards for the accurate quantification of enzymatic products. Finally, the reagents are designed with ease of synthesis in mind, thus permitting scale-up preparation to support worldwide newborn screening of lysosomal storage diseases. The new reagents provide the most sensitive assay for the three lysosomal enzymes reported to date as shown by their performance in reactions using dried blood spots as the enzyme source. Also, the ratio of assay signal to that measured in the absence of blood (background) is superior to all previously reported mucopolysaccharidosis types I, II, and VI assays.
Fenretinide derivatives act as disrupters of interactions of serum retinol binding protein (sRBP) with transthyretin and the sRBP receptor
Campos-Sandoval, José Angel,Redondo, Clara,Kinsella, Gemma K.,Pal, Akos,Jones, Geraint,Eyre, Gwen S.,Hirst, Simon C.,Findlay, John B. C.
experimental part, p. 4378 - 4387 (2011/09/14)
Serum retinol binding protein (sRBP) is released from the liver as a complex with transthyretin (TTR), a process under the control of dietary retinol. Elevated levels of sRBP may be involved in inhibiting cellular responses to insulin and in generating first insulin resistance and then type 2 diabetes, offering a new target for therapeutic attack for these conditions. A series of retinoid analogues were synthesized and examined for their binding to sRBP and their ability to disrupt the sRBP-TTR and sRBP-sRBP receptor interactions. A number inhibit the sRBP-TTR and sRBP-sRBP receptor interactions as well as or better than Fenretinide (FEN), presenting a potential novel dual mechanism of action and perhaps offering a new therapeutic intervention against type 2 diabetes and its development. Shortening the chain length of the FEN derivative substantially abolished binding to sRBP, indicating that the strength of the interaction lies in the polyene chain region. Differences in potency against the sRBP-TTR and sRBP-sRBP receptor interactions suggest variant effects of the compounds on the two loops of sRBP guarding the entrance of the binding pocket that are responsible for these two protein-protein interactions.
COMPOSITIONS AND METHODS FOR DETECTION OF LYSOSOMAL STORAGE DISEASE
-
Page/Page column 60, (2008/06/13)
The present invention provides compositions for performing assays of enzyme activity associated with lysosomal storage diseases. The invention further provides methods for determining enzyme activity, and methods for the screening for lysosomal storage disease in an individual.