556-53-6Relevant articles and documents
Green method for catalyzing reduction reaction of aliphatic nitro derivative
-
Paragraph 0005-0006; 0013-0016, (2021/07/31)
The invention relates to a green method for catalyzing reduction reaction of aliphatic nitro derivatives. According to the method, non-transition metal compounds, namely triethyl boron and potassium tert-butoxide, are used as a catalytic system for the first time, an aliphatic nitro derivative and pinacolborane which is low in price and easy to obtain are catalyzed to be subjected to a reduction reaction under mild conditions, and an aliphatic amine hydrochloride product is synthesized after acidification with a hydrochloric acid aqueous solution. Compared with a traditional method, the method generally has the advantages that the catalyst is cheap and easy to obtain, operation is convenient, and reaction is safe. The selective reduction reaction of the aliphatic nitro derivative catalyzed by the non-transition metal catalyst and pinacol borane is realized for the first time, and the aliphatic amine hydrochloride product is synthesized through acidification treatment of the hydrochloric acid aqueous solution, so that a practical new reaction strategy is provided for laboratory preparation or industrial production.
Cobalt-Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to One-Pot Synthesis of Aldimines and Amides
Gudun, Kristina A.,Hayrapetyan, Davit,Khalimon, Andrey Y.,Segizbayev, Medet,Slamova, Ainur,Zakarina, Raikhan
, (2021/11/30)
The commercially available and bench-stable Co(acac)2 ligated with bis[(2-diphenylphosphino)phenyl] ether (dpephos) was employed for selective room temperature hydroboration of nitro compounds with HBPin (TOF up to 4615 h?1), tolerating halide, hydroxy, amino, ether, ester, lactone, amide and heteroaromatic functionalities. These reactions offered a direct access to a variety of N-borylamines RN(H)BPin, which were in situ treated with aldehydes and carboxylic acids to produce a series of aldimines and secondary carboxamides without the need for dehydrating and/or coupling reagents. Combination of these transformations in a sequential one-pot manner allowed for direct and selective synthesis of aldimines and secondary carboxamides from readily available and inexpensive nitro compounds.
Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex
Bera, Jitendra K.,Pandey, Pragati
supporting information, p. 9204 - 9207 (2021/09/20)
A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.
Transition metal-free catalytic reduction of primary amides using an abnormal NHC based potassium complex: Integrating nucleophilicity with Lewis acidic activation
Bhunia, Mrinal,Sahoo, Sumeet Ranjan,Das, Arpan,Ahmed, Jasimuddin,Sreejyothi,Mandal, Swadhin K.
, p. 1848 - 1854 (2020/03/03)
An abnormal N-heterocyclic carbene (aNHC) based potassium complex was used as a transition metal-free catalyst for reduction of primary amides to corresponding primary amines under ambient conditions. Only 2 mol% loading of the catalyst exhibits a broad substrate scope including aromatic, aliphatic and heterocyclic primary amides with excellent functional group tolerance. This method was applicable for reduction of chiral amides and utilized for the synthesis of pharmaceutically valuable precursors on a gram scale. During mechanistic investigation, several intermediates were isolated and characterized through spectroscopic techniques and one of the catalytic intermediates was characterized through single-crystal XRD. A well-defined catalyst and isolable intermediate along with several stoichiometric experiments, in situ NMR experiments and the DFT study helped us to sketch the mechanistic pathway for this reduction process unravelling the dual role of the catalyst involving nucleophilic activation by aNHC along with Lewis acidic activation by K ions.
NNP-Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Base-Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions
Adam, Rosa,Alberico, Elisabetta,Baumann, Wolfgang,Drexler, Hans-Joachim,Jackstell, Ralf,Junge, Henrik,Beller, Matthias
, p. 4991 - 5002 (2016/04/05)
A series of seven novel NImNHP-type pincer imidazolylphosphine ruthenium complexes has been synthesized and fully characterized. The use of hydrogenation of benzonitrile as a benchmark test identified [RuHCl(CO)(NImNHPtBu)] as the most active catalyst. With its stable Ru-BH4 analogue, in which chloride is replaced by BH4, a broad range of (hetero)aromatic and aliphatic nitriles, including industrially interesting adiponitrile, has been hydrogenated under mild and base-free conditions.
Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials
Mueller, Christiane,Kraushaar, Konstantin,Doebbe, Anja,Mussgnug, Jan H.,Kruse, Olaf,Kroke, Edwin,Patel, Anant V.
, p. 10163 - 10165 (2013/10/22)
A novel sol-gel synthesis route is reported which results in the formation of optically transparent silica based hydro- and xerogels from an aminosilane precursor in aqueous solutions. These materials can be used for entrapment of microalgae and light-harvesting complex (LHC) samples. The Royal Society of Chemistry 2013.
A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: Iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant
Miyamoto, Kazunori,Sakai, Yuuta,Goda, Shunsuke,Ochiai, Masahito
supporting information; experimental part, p. 982 - 984 (2012/02/04)
The first catalytic version of hypervalent aryl-λ3- iodane-induced Hofmann rearrangement of primary carboxamides, which probably involves in situ generation of a tetracoordinated bis(aqua)(hydroxy)phenyl- λ3-iodane complex as an active oxidant from a catalytic amount of iodobenzene by the reaction with m-chloroperbenzoic acid in the presence of HBF4 in dichloromethane-water under mild conditions, was developed.
Zinc/hydrazine: A low cost-facile system for the reduction of nitro compounds
Gowda, Shankare,Gowda, D. Channe
, p. 180 - 183 (2007/10/03)
The nitro group in aliphatic and aromatic nitro compounds also containing reducible substituents such as ethene, nitrile, carboxylic acid, phenol, halogen, ester etc., are selectively and rapidly reduced at room temperature to corresponding amines in good yields by employing 99-100% hydrazine hydrate, in the presence of commercial zinc dust. It was observed that, this system is equally compatible with existing methods, which employ expensive catalysts like palladium, platinum, ruthenium etc.
Hydrazinium monoformate: A new hydrogen donor. Selective reduction of nitrocompounds catalyzed by commercial zinc dust
Gowda, Shankare,Gowda, B. K. Kempe,Gowda, D. Channe
, p. 281 - 289 (2007/10/03)
The nitro group in aliphatic and aromatic nitro compounds also containing reducible substituents such as ethene, nitrile, acid, phenol, halogen, ester, etc., are selectively and rapidly reduced at room temperature to corresponding amines in good yields by employing hydrazinium monoformate, in the presence of commercial zinc dust. It was observed that, hydrazinium monoformate is more effective than hydrazine or formic acid and reduction of nitro group occurs without hydrogenolysis in the low cost zinc dust compared to expensive metals like palladium.
Nickel-catalyzed formic acid reductions. A selective method for the reduction of nitro compounds
Channe Gowda,Prakasha Gowda,Ramesha Baba,Gowda, Shankare
, p. 2889 - 2895 (2007/10/03)
Aliphatic and aromatic nitro compounds were selectively reduced to their corresponding amino derivatives in good yields using formic acid and raney nickel. This system is found to be compatible with several sensitive functionalities such as halogens, -OH, -OCH3, -CHO, -COCH3-COC6H5, -COOH, -COOC2H5, -CONH2, -CN, -CH=CH-COOH, -NHCOCH3. The reduction can be carrid out not only with HCOOH but also with HCOONH4.