61062-55-3Relevant articles and documents
Preparation method of aryl ketone
-
Paragraph 0074-0079, (2021/10/11)
The invention discloses a preparation method of aryl ketone. The preparation method comprises the following steps: mixing a phenyl epoxy compound, aryl trifluoromethanesulfonate, a phosphine ligand, a nickel source, alkali and an organic solvent, and conducting reacting in one step under the protection of inert gas to generate aryl ketone. The preparation method disclosed by the invention is simple in process, mild in conditions and low in cost, and paves a way for large-scale industrial production application, such as drug synthesis or natural product synthesis application, of aryl ketone serving as an important organic reaction intermediate.
Palladium-catalyzed synthesis of α-aryl acetophenones from styryl ethers and aryl diazonium saltsviaregioselective Heck arylation at room temperature
Kandasamy, Jeyakumar,Lee, Yong Rok,Singh, Adesh Kumar,Venkatesh, Rapelly
supporting information, p. 7832 - 7837 (2021/09/28)
Preparation of α-aryl acetophenones from styryl ethers and aryldiazonium salts is described. The reaction is catalyzed by palladium acetate at room temperature in the absence of ligand and base. The developed method is highly attractive in terms of reaction conditions, substrate scope, functional group tolerance and yields. Synthetic applications of the present method are demonstrated by preparing α-aryl indoles and 3-aryl isocoumarin from styryl ethers.
The organocatalytic enantiodivergent fluorination of β-ketodiaryl-phosphine oxides for the construction of carbon-fluorine quaternary stereocenters
Xie, Shaolei,He, Zhi-Juan,Zhang, Ling-Hui,Huang, Bo-Lun,Chen, Xiao-Wei,Zhan, Zong-Song,Zhang, Fu-Min
supporting information, p. 2069 - 2072 (2021/03/01)
Commercially available cinchona alkaloids that can catalyze the enantiodivergent fluorination of β-ketodiarylphosphine oxides were developed to construct carbon-fluorine quaternary stereocenters. This protocol features a wide scope of substrates and excellent enantioselectivities, and it is scalable.
Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides
Yang, Jianping,Massaro, Luca,Krajangsri, Suppachai,Singh, Thishana,Su, Hao,Silvi, Emanuele,Ponra, Sudipta,Eriksson, Lars,Ahlquist, M?rten S. G.,Andersson, Pher G.
supporting information, p. 21594 - 21603 (2021/12/27)
We present a highly efficient convergent asymmetric hydrogenation of E/Z mixtures of enamides catalyzed by N,P-iridium complexes supported by mechanistic studies. It was found that reduction of the olefinic isomers (E and Z geometries) produces chiral amides with the same absolute configuration (enantioconvergent hydrogenation). This allowed the hydrogenation of a wide range of E/Z mixtures of trisubstituted enamides with excellent enantioselectivity (up to 99% ee). A detailed mechanistic study using deuterium labeling and kinetic experiments revealed two different pathways for the observed enantioconvergence. For α-aryl enamides, fast isomerization of the double bond takes place, and the overall process results in kinetic resolution of the two isomers. For α-alkyl enamides, no double bond isomerization is detected, and competition experiments suggested that substrate chelation is responsible for the enantioconvergent stereochemical outcome. DFT calculations were performed to predict the correct absolute configuration of the products and strengthen the proposed mechanism of the iridium-catalyzed isomerization pathway.
C-H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis
Murugesan, Vetrivelan,Ganguly, Anirban,Karthika, Ardra,Rasappan, Ramesh
supporting information, p. 5389 - 5393 (2021/07/21)
Catalyst controlled site-selective C-H functionalization is a challenging but powerful tool in organic synthesis. Polarity-matched and sterically controlled hydrogen atom transfer (HAT) provides an excellent opportunity for site-selective functionalization. As such, the dual Ni/photoredox system was successfully employed to generate acyl radicals from aldehydes via selective formyl C-H activation and subsequently cross-coupled to generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed a cross-coupling reaction via C-N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of functional group tolerance. High regioselectivity toward formyl C-H bonds even in the presence of α-methylene carbonyl or α-amino/oxy methylene was obtained.
Aerobic oxygenation of α-methylene ketones under visible-light catalysed by a CeNi3complex with a macrocyclic tris(salen)-ligand
Fujiwara, Sakiko,Kon, Yoshihiro,Mashima, Kazushi,Nagae, Haruki,Okuda, Jun,Sakamoto, Kazutaka,Sato, Kazuhiko,Schindler, Tobias
supporting information, p. 11169 - 11172 (2021/11/04)
A hetero-tetranuclear CeNi3 complex with a macrocyclic ligand catalysed the aerobic oxygenation of a methylene group adjacent to a carbonyl group under visible-light radiation to produce the corresponding α-diketones. The visible-light induced homolysis of the Ce-O bond of a bis(enolate) intermediate is proposed prior to aerobic oxygenation.
Ketone Synthesis from Benzyldiboronates and Esters: Leveraging α-Boryl Carbanions for Carbon-Carbon Bond Formation
Lee, Boran,Chirik, Paul J.
supporting information, p. 2429 - 2437 (2020/03/03)
An alkoxide-promoted method for the synthesis of ketones from readily available esters and benzyldiboronates is described. The synthetic method is compatible with a host of sterically differentiated alkyl groups, alkenes, acidic protons α to carbonyl groups, tertiary amides, and aryl rings having common organic functional groups. With esters bearing α-stereocenters, high enantiomeric excess was maintained during ketone formation, establishing minimal competing racemization by deprotonation. Monitoring the reaction between benzyldiboronate and LiOtBu in THF at 23 °C allowed for the identification of products arising from deborylation to form an α-boryl carbanion, deprotonation, and alkoxide addition to form an "-ate" complex. Addition of 4-trifluoromethylbenzoate to this mixture established the α-boryl carbanion as the intermediate responsible for C-C bond formation and ultimately ketone synthesis. Elucidation of the role of this intermediate leveraged additional bond-forming chemistry and enabled the one-pot synthesis of ketones with α-halogen atoms and quaternary centers with four-different carbon substituents.
A copper-catalyzed insertion of sulfur dioxide: Via radical coupling
Zhang, Jun,Yang, Min,Liu, Jin-Biao,He, Fu-Sheng,Wu, Jie
supporting information, p. 3225 - 3228 (2020/03/23)
A copper-catalyzed three-component reaction of O-acyl oximes, DABCO·(SO2)2, and 2H-azirines under mild conditions has been achieved. This protocol provides an efficient route for the construction of various tetrasubstituted β-sulfonyl N-unprotected enamines in moderate to good yields with excellent stereoselectivity and regioselectivity. Notably, this method represents a rare example of 2H-azirines as useful synthons for β-functionalized N-unprotected enamines. Preliminary mechanistic studies indicate that the reaction proceeds through coupling of a sulfonyl radical and α-carbon radical via copper-catalyzed ring-opening C-C bond cleavage of O-acyl oxime and C-N bond cleavage of 2H-azirine with the insertion of sulfur dioxide.
I-Pr2NMgCl·LiCl Enables the Synthesis of Ketones by Direct Addition of Grignard Reagents to Carboxylate Anions
Colas, Kilian,Dos Santos, A. Catarina V. D.,Mendoza, Abraham
supporting information, (2019/10/08)
The direct preparation of ketones from carboxylate anions is greatly limited by the required use of organolithium reagents or activated acyl sources that need to be independently prepared. Herein, a specific magnesium amide additive is used to activate and control the addition of more tolerant Grignard reagents to carboxylate anions. This strategy enables the modular synthesis of ketones from CO2 and the preparation of isotopically labeled pharmaceutical building blocks in a single operation.
Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain
Kramer, Jan S.,Woltersdorf, Stefano,Duflot, Thomas,Hiesinger, Kerstin,Lillich, Felix F.,Kn?ll, Felix,Wittmann, Sandra K.,Klingler, Franca-M.,Brunst, Steffen,Chaikuad, Apirat,Morisseau, Christophe,Hammock, Bruce D.,Buccellati, Carola,Sala, Angelo,Rovati, G. Enrico,Leuillier, Matthieu,Fraineau, Sylvain,Rondeaux, Julie,Hernandez-Olmos, Victor,Heering, Jan,Merk, Daniel,Pogoryelov, Denys,Steinhilber, Dieter,Knapp, Stefan,Bellien, Jeremy,Proschak, Ewgenij
, p. 8443 - 8460 (2019/10/16)
The emerging pharmacological target soluble epoxide hydrolase (sEH) is a bifunctional enzyme exhibiting two different catalytic activities that are located in two distinct domains. Although the physiological role of the C-terminal hydrolase domain is well-investigated, little is known about its phosphatase activity, located in the N-terminal phosphatase domain of sEH (sEH-P). Herein we report the discovery and optimization of the first inhibitor of human and rat sEH-P that is applicable in vivo. X-ray structure analysis of the sEH phosphatase domain complexed with an inhibitor provides insights in the molecular basis of small-molecule sEH-P inhibition and helps to rationalize the structure-activity relationships. 4-(4-(3,4-Dichlorophenyl)-5-phenyloxazol-2-yl)butanoic acid (22b, SWE101) has an excellent pharmacokinetic and pharmacodynamic profile in rats and enables the investigation of the physiological and pathophysiological role of sEH-P in vivo.