634197-80-1Relevant articles and documents
PDIA4 INHIBITORS AND USE THEREOF FOR INHIBITING ?-CELL PATHOGENESIS AND TREATING DIABETES
-
, (2021/06/11)
Disulfide-Isomerase A4 (PDIA4) inhibitors and use thereof for inhibiting pancreatic β-cell pathogenesis and treating diabetes are disclosed. Drug candidates that inhibit PDIA4 with IC50 values ranging from 4 μM to 300 nM are identified. The compounds are highly active in augmenting insulin secretion from pancreatic β-cells. The representative compound No. 8 (4,5-dimethoxy-2-propiolamidobenzoic acid), alone or in combination with metformin, is effective in preserving pancreatic β-cell function, treating and/or reversing, returning blood glucose concentration to a normal level in a diabetic.
Fluorine-containing 6,7-dialkoxybiaryl-based inhibitors for phosphodiesterase 10 A: Synthesis and in vitro evaluation of inhibitory potency, selectivity, and metabolism
Schwan, Gregor,Barbar Asskar, Ghadir,Hoefgen, Norbert,Kubicova, Lenka,Funke, Uta,Egerland, Ute,Zahn, Michael,Nieber, Karen,Scheunemann, Matthias,Straeter, Norbert,Brust, Peter,Briel, Detlef
, p. 1476 - 1487 (2014/07/21)
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ-10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo-alkyl substituents at position 2 of the quinazoline moiety and/or halo-alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7-difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)-7-(fluoromethoxy)-6-methoxy-4-(3-(quinoxaline-2-yloxy)pyrrolidine-1-yl) quinazoline (16 a), 19 a-d, (R)-tert-butyl-3-(6-fluoroquinoxalin-2-yloxy) pyrrolidine-1-carboxylate (29), and 35 (IC50 PDE10A 11-65 nM) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ-10. Fluor your health: Phosphodiesterase 10 A (PDE10A) has emerged as an attractive target for the development of 18F-labelled brain imaging agents for positron emission tomography. A series of fluorinated dialkoxybiaryl compounds were synthesized and evaluated as PDE10A inhibitors, assisted by QSAR docking studies. The 7-fluoromethoxy derivative appears to be a promising candidate for further development.
Potent and Selective Inhibitors of Platelet-Derived Growth Factor Receptor Phosphorylation. 3. Replacement of Quinazoline Moiety and Improvement of Metabolic Polymorphism of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline Derivatives
Matsuno, Kenji,Ushiki, Junko,Seishi, Takashi,Ichimura, Michio,Giese, Neill A.,Yu, Jin-Chen,Takahashi, Shusuke,Oda, Shoji,Nomoto, Yuji
, p. 4910 - 4925 (2007/10/03)
We have previously reported that a series of 4-[4-(N-substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives were potent and selective inhibitors of platelet-derived growth factor receptor (PDGFR) phosphorylation and demonstrated several biological effects such as suppression of neointima formation following balloon injury in rat carotid artery by oral administration. Here, we investigated structure-activity relationships of the 6,7-dimethoxyquinazolinyl moiety. In regard to 6,7-dimethoxy groups, ethoxy analogues showed potent activity (IC50 of 16b is 0.04 μM; IC50 of 17a is 0.01 μM) and further extension of the alkyl group reduced activity. Interestingly, methoxyethoxy (IC50 of 16j is 0.02μM; IC50 of 17h is 0.01 μM) and ethoxyethoxy (IC50 of 17j is 0.02 μM) analogues showed the most potent activity, suggesting that the inserted oxygen atom significantly interacts with β-PDGFR. Among tricyclic quinazoline derivatives, the 2-oxoimidazo[4,5-e]quinazoline derivative 21a showed potent activity (IC 50 = 0.10 μM). Regarding replacements of quinazoline by other heterocyclic rings, pyrazolo[3,4-d]pyrimidine (39a, IC50 = 0.17 μM) and quinoline (IC50 of 40a is 0.18 μM; IC50 of 40b is 0.09 μM) derivatives showed potent activity. Isoquinoline and some pyridopyrimidine derivatives were completely inactive; therefore, 1-aza has an important role. Also 7-aza and 8-aza substitution on the parent quinazoline ring has a detrimental effect on the interaction with β-PDGFR. We also demonstrated that the substituents on the quinazoline ring possess major consequences for metabolic polymorphism. Although there existed extensive metabolizers and poor metabolizers in Sprague-Dawley rats administrated 6,7-dimethoxyquinazoline derivatives (1b and 1c), 6-(2-methoxy)ethoxy-7-methoxyquinazoline analogue 16k showed no metabolic polymorphism.