7786-61-0Relevant articles and documents
Rapid biosynthesis of phenolic glycosides and their derivatives from biomass-derived hydroxycinnamates
Zhao, Mingtao,Hong, Xulin,Abdullah,Yao, Ruilian,Xiao, Yi
, p. 838 - 847 (2021/02/09)
Biomass-derived hydroxycinnamates (mainly includingp-coumaric acid and ferulic acid), which are natural sources of aromatic compounds, are highly underutilized resources. There is a need to upgrade them to make them economically feasible. Value-added phenolic glycosides and their derivatives, both belonging to a class of plant aromatic natural products, are widely used in the nutraceutical, pharmaceutical, and cosmetic industries. However, their complex aromatic structures make their efficient biosynthesis a challenging process. To overcome this issue, we created three novel synthetic cascades for the biosynthesis of phenolic glycosides (gastrodin, arbutin, and salidroside) and their derivatives (hydroquinone, tyrosol, hydroxytyrosol, and homovanillyl alcohol) fromp-coumaric acid and ferulic acid. Moreover, because the biomass-derived hydroxycinnamates directly provided aromatic units, the cascades enabled efficient biosynthesis. We achieved substantially high production rates (up to or above 100-fold enhancement) relative to the glucose-based biosynthesis. Given the ubiquity of the aromatic structure in natural products, the use of biomass-derived aromatics should facilitate the rapid biosynthesis of numerous aromatic natural products.
The bio-based phthalocyanine resins with high Tg and high char yield derived from vanillin
Wang, Caiyun,Shi, Manling,Fang, Linxuan,Dai, Menglu,Huang, Gang,Sun, Jing,Fang, Qiang
, (2021/04/15)
The conversion of bio-based vanillin into the heat-resistant polymers is investigated. Firstly, converting the aldehyde group of vanillin into a vinyl group obtained 2-methoxy-4-vinylphenol (S1), which was then treated with nitro-phthalonitrile to give 4-(2-methoxy-4-vinylphenoxy)phthalonitrile (S2). Secondly, thermal polymerization between S1 and S2 in a different molar ratio gave a series of vanillin–based phthalocyanine (V-PN) resins that display high char yield and high Tg. The best result was obtained when the molar ratio between S1 and S2 was 1–50 and the obtained V-PN resin displayed a char yield of up to 76%, a Tg over 400 °C. These data are much better than those of the widely used petroleum-based phthalocyanine resins, suggesting that these bio-based functional monomers derived from vanillin are suitable as the precursors for the fabrication of the ablation-resistant materials in the application of the aerospace industry.
Cross-Coupling Reactions with 2-Amino-/Acetylamino-Substituted 3-Iodo-1,4-naphthoquinones: Convenient Synthesis of Novel Alkenyl- And Alkynylnaphthoquinones and Derivatives
Demidoff, Felipe C.,Rodrigues Filho, Eduardo José P.,De Souza, Andréa Luzia F.,Netto, Chaquip D.,De Carvalho, Leandro L.
supporting information, p. 4097 - 4109 (2021/08/31)
Functionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free Cu I -mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.
Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones
Dong, Guangbin,Xu, Yan,Zhou, Xukai
supporting information, p. 20042 - 20048 (2021/12/03)
The dehydroacylation of ketones to olefins is realized under mild conditions, which exhibits a unique reaction pathway involving aromatization-driven C-C cleavage to remove the acyl moiety, followed by Cu-mediated oxidative elimination to form an alkene between the α and β carbons. The newly adopted N′-methylpicolinohydrazonamide (MPHA) reagent is key to enable efficient cleavage of ketone C-C bonds at room temperature. Diverse alkyl- and aryl-substituted olefins, dienes, and special alkenes are generated with broad functional group tolerance. Strategic applications of this method are also demonstrated.
Discovery, Biocatalytic Exploration and Structural Analysis of a 4-Ethylphenol Oxidase from Gulosibacter chungangensis
Alvigini, Laura,Fraaije, Marco W.,Gran-Scheuch, Alejandro,Guo, Yiming,Mattevi, Andrea,Saifuddin, Mohammad,Trajkovic, Milos
, p. 3225 - 3233 (2021/10/04)
The vanillyl-alcohol oxidase (VAO) family is a rich source of biocatalysts for the oxidative bioconversion of phenolic compounds. Through genome mining and sequence comparisons, we found that several family members lack a generally conserved catalytic aspartate. This finding led us to study a VAO-homolog featuring a glutamate residue in place of the common aspartate. This 4-ethylphenol oxidase from Gulosibacter chungangensis (Gc4EO) shares 42 % sequence identity with VAO from Penicillium simplicissimum, contains the same 8α-N3-histidyl-bound FAD and uses oxygen as electron acceptor. However, Gc4EO features a distinct substrate scope and product specificity as it is primarily effective in the dehydrogenation of para-substituted phenols with little generation of hydroxylated products. The three-dimensional structure shows that the characteristic glutamate side chain creates a closely packed environment that may limit water accessibility and thereby protect from hydroxylation. With its high thermal stability, well defined structural properties and high expression yields, Gc4EO may become a catalyst of choice for the specific dehydrogenation of phenolic compounds bearing small substituents.
Bioinspired Selective Synthesis of Heterodimer 8-5′ or 8- O-4′ Neolignan Analogs
Dong, Kui,Zhao, Chuang-Yuan,Wang, Xiao-Ju,Wu, Li-Zhu,Liu, Qiang
supporting information, p. 2816 - 2820 (2021/04/13)
The bioinspired synthesis of heterodimer neolignan analogs is reported by single-electron oxidation of both alkenyl phenols and phenols individually, followed by a combination of the resultant radicals. This oxidative radical cross-coupling strategy can afford heterodimer 8-5′ or 8-O-4′ neolignan analogs selectively with the use of air as the terminal oxidant and copper acetate as the catalyst at room temperature.
Efficient synthesis of styrene derivatives through ethenolysis of renewable propenylbenzenes
Avenda?o Villarreal, Jesus A.,Delolo, Fábio G.,Granato, Artur V.,dos Santos, Eduardo N.
, (2021/06/03)
Functionalized styrenes were obtained by the ethenolysis of renewable 1-propenylbenzenes in a very efficient synthetic pathway. Some of the products are valuable food & flavor ingredients (4-vinylguaiacol) or locust pheromone (4-vinylanisole). The catalysts employed were ruthenium-alkylidene complexes bearing a N-heterocyclic carbene as a ligand, which bulkiness proved to be important for the catalysis output. The judicious choice the reaction conditions was critical to enable near quantitative yields under mild conditions in short reaction times. More strikingly, the catalyst load could be reduced to 0.01 mol%, keeping good conversion and selectivity.
The first one-pot metathesis-hydroformylation procedure: a straight synthesis of 2-arylpropanals from renewable 1-propenylbenzenes
Avenda?o Villarreal, Jesus Alberto,Delolo, Fábio Godoy,Granato, Artur Vicari,Gusevskaya, Elena Vitalievna,dos Santos, Eduardo Nicolau
, p. 8007 - 8013 (2021/12/27)
Hydroformylation is a consolidated synthetic tool in the chemical industry, both in commodity and in the fine chemicals industry. Olefin metathesis has been largely employed in the petrochemical sector, and, more recently, in the synthesis of specialty chemicals. Although these reactions may be involved in the same synthetic route for various industrial chemicals, to the best of our knowledge, they have never been combined in a one-pot procedure. As a proof of concept, we have demonstrated in the present work that the ruthenium-catalyzed ethenolysis of renewable 1-propenylbenzenes followed by the rhodium-catalyzed hydroformylation of functionalized styrenes formed in the first step could be done in one pot. The integration of these reactions was not straightforward once the catalyst of the first step interfered with the catalyst of the second step. Under optimized conditions, it was possible to synthesize 2-arylpropanals, a class of compounds valuable as synthetic intermediates to access non-steroidal anti-inflammatory drugs, in overall yields of 85-90%, at low catalyst loadings.
New hybrids based on curcumin and resveratrol: Synthesis, cytotoxicity and antiproliferative activity against colorectal cancer cells
Cardona-G, Wilson,Hernández, Cristian,Herrera-R, Angie,Moreno, Gustavo
, (2021/05/26)
We synthesized twelve hybrids based on curcumin and resveratrol, and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, along with the non-malignant CHO-K1 cell line. Among the tested compounds, hybrids 3e and 3i (for SW480) and 3a, 3e and 3k (for SW620) displayed the best cytotoxic activity with IC50 values ranging from 11.52 ± 2.78 to 29.33 ± 4.73 μM for both cell lines, with selectivity indices (SI) higher than 1, after 48 h of treatment. Selectivity indices were even higher than those reported for the reference drug, 5-fluorouracil (SI = 0.96), the starting compound resveratrol (SI = 0.45) and the equimolar mixture of curcumin plus resveratrol (SI = 0.77). The previous hybrids showed good antiproliferative activity.
Monitoring hydroxycinnamic acid decarboxylation by lactic acid bacteria using high-throughput UV-Vis spectroscopy
García-Cano, Israel,Giusti, M. Monica,Jiménez-Flores, Rafael,Miyagusuku-Cruzado, Gonzalo,Rocha-Mendoza, Diana
, (2020/08/24)
Hydroxycinnamic acid (HCA) decarboxylation by lactic acid bacteria (LAB) results in the production of 4-vinylplenols with great impact on the sensorial characteristics of foods. The determination of LAB decarboxylating capabilities is key for optimal strain selection for food production. The activity of LAB strains from the Ohio State University-Parker Endowed Chair (OSU-PECh) collection potentially capable of synthesizing phenolic acid decarboxylase was evaluated after incubation with HCAs for 36 h at 32 °C. A high-throughput method for monitoring HCAs decarboxylation was developed based on hypsochromic shifts at pH 1.0. Out of 22 strains evaluated, only Enterococcus mundtii, Lactobacillus plantarum and Pediococcus pentosaceus were capable of decarboxylating all p-coumaric, caffeic and ferulic acids. Other strains only decarboxylated p-coumaric and caffeic acid (6), only p-coumaric acid (2) or only caffeic acid (1), while 10 strains did not decarboxylate any HCA. p-Coumaric acid had the highest conversion efficiency, followed by caffeic acid and lastly ferulic acid. Results were confirmed by HPLC-DAD-ESI-MS analyses, showing the conversion of HCAs into their 4-vinylphenol derivatives. This work can help improve the sensory characteristics of HCA-rich foods where fermentation with LAB was used during processing.