1814
K. M. Andrews et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1810–1814
5. Ammirati, M. J.; Andrews, K. M.; Boyer, D. A.; Brodeur, A. M.; Danley, D. E.;
Ph
O
Ph
Ph
Doran, S. D.; Hulin, B.; Liu, S.; McPherson, R. K.; Orena, S. J.; Parker, J. C.;
Polivkova, J.; Qiu, X.; Soglia, C. B.; Treadway, J. L.; VanVolkenburg, M. A.; Wilder,
D. C.; Piotrowski, D. W. Bioorg. Med. Chem. Lett. 2009, 19, 1991.
6. For alogliptin, see: Feng, J.; Zhang, Z.; Wallace, M. B., et al J. Med. Chem. 2007, 50,
2297; For linagliptin, see: Wang, Y.; Serradell, N.; Rosa, E.; Castaner, R. Drugs
Future 2008, 33, 473.
N
S
O
14
N
N
a
b - d
O
O
N
NH NH2
HO
OH
O
O
7. Some reports have suggested that inhibition of DPP-8/9 is associated with a
higher risk of toxicity in animal models, see: Lankas, G. R.; Leiting, B.; Roy, R. S.;
Eiermann, G. J.; Beconi, M. G.; Biftu, T., et al Diabetes 2005, 54, 2988; However,
more recently this assertion has been challenged, see: Wu, J.-J.; Tang, H.-K.;
Yeh, T.-K.; Chen, C.-M.; Shy, H.-S.; Chu, Y.-R.; Chien, C.-H.; Tsai, T.-Y.; Huang, Y.-
C.; Huang, Y.-L.; Huang, C.-H.; Tseng, H.-Y.; Jiaang, W.-T.; Chao, Y.-S.; Chen, X.
Biochem. Pharmacol. 2009, 78, 203. We desired to maximize selectivity over
DPP-8..
8. (a) Price, D. A.; Blagg, J.; Jones, L.; Greene, N.; Wager, T. Expert Opin. Drug Metab.
Toxicol. 2009, 5, 921; (b) Hughes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.;
DeCrescenzo, G. A.; Devraj, R. V.; Ellsworth, E.; Fobian, Y. M.; Gibbs, E. M.;
Gilles, R. W.; Greene, N.; Huang, E.; Krieger-Burke, T.; Loesel, J.; Wager, T.;
Whiteley, L.; Zhang, Y. Bioorg. Med. Chem. Lett. 2008, 18, 4872.
9. Benbow, J. W.; Andrews, K. A.; Aubrecht, J.; Beebe, D.; Boyer, D.; Doran, S.;
Homiski, M.; Hui, Y.; McPherson, K.; Parker, J. C.; Treadway, J.; VanVolkenberg,
M.; Zembrowski, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 2220.
O
15
13
R1
N
N
R2
X
N
N
H
N
e - g
h, i
O
O
O
NH
H2N
N
O
F
F
F
F
16
5
10. (a) Wright, S. W.; Ammirati, M. J.; Andrews, K. M.; Brodeur, A. M.; Danley, D. E.;
Doran, S. D.; Lillquist, J. S.; Liu, S.; McClure, L. D.; McPherson, R. K.; Olson, T. V.;
Orena, S. J.; Parker, J. C.; Rocke, B. N.; Soeller, W. C.; Soglia, C. B.; Treadway, J. T.;
VanVolkenburg, M. A.; Zhao, Z.; Cox, E. D. Bioorg. Med. Chem. Lett. 2007, 17,
5638; (b) Corbett, J. W.; Dirico, K.; Song, W.; Boscoe, B. P.; Doran, S. D.; Boyer,
D.; Qiu, X.; Ammirati, M.; VanVolkenburg, M. A.; McPherson, R. K.; Parker, J. C.;
Cox, E. D. Bioorg. Med. Chem. Lett. 2007, 17, 6707.
11. (a) Liang, G.-B.; Qian, X.; Biftu, T.; Singh, S.; Gao, Y.-D.; Scapin, G.; Patel, S.;
Leiting, B.; Patel, R.; Wu, J.; Zhang, X.; Thornberry, N. A.; Weber, A. E. Bioorg.
Med. Chem. Lett. 2008, 18, 3706; (b) Benbow, J. W.; Piotrowski, D. W.; Hui, Y.
PCT Int. Appl., WO2007148185, 2007.; (c) Mattei, P.; Boehringer, M.; Di Giorgio,
P.; Fischer, H.; Hennig, M.; Huwyler, J.; Koçer, B.; Kuhn, B.; Loeffler, B. M.;
MacDonald, A.; Narquizian, R.; Rauber, E.; Sebokova, E.; Sprecher, U. Bioorg.
Med. Chem. Lett. 2010, 20, 1109.
12. (a) Weingarten, M. D.; Sekanina, K.; Still, W. C. J. Am. Chem. Soc., 1998, 120,
9112, Supplementary data.; (b) Rejman, D.; Kocalka, P.; Budesinsky, M.; Pohl,
R.; Rosenberg, I. Tetrahedron 2007, 63, 1243.
13. Pace, C. N. J. Mol. Biol. 1992, 226, 29.
14. The structure has been deposited in the Protein Data Bank with the deposition
code 3QBJ.
Scheme 2. The second generation asymmetric route to (3S,4S) 3-amino-4-(lactam-
N-yl) pyrrolidine Reagent and conditions: (a) Burgess reagent, dioxane, heat; (b) K-
phthalimide, CH3CN, 80 °C; (c) 2 N HCl; (d) N2H4ÁH2O, EtOH, heat; (e) HO2C(CH2)3
CF2CH2Cl, propanephosphonic acid cyclic anhydride, Et3N, EtOAc, heat; (f) NaH,
THF/DMF; (g) H2 (75 psi), Pd(OH)2/C, EtOH/AcOH, 50 °C; h) Het-Cl, DIPEA, t-BuOH,
heat; (i) PPA, heat.
inhibition. The PK properties were enhanced by lowering the basi-
city and lipophilicity of the core heterocycle. Advanced profiling in
a rat PK/PD model and subsequent human projections identified 5o
as having an acceptable human DPP-4 inhibition profile with a pro-
jected dose of 100 mg/q.d. that was suitable for a drug develop-
ment candidate. A non-azide, asymmetric route to the candidate
compound was also discovered.
15. Compounds 5l, 5m, 5n and 5o all had HLM CLint <7.0 mL/min/kg and RLM CLint
<28.0 mL/min/kg. The crystalline free base of 5o had a solubility of 2.6 mgA/mL
in phosphate buffered saline (pHfinal 7.0) and a determined HLM CLint clearance
value of 3.1 mL/min/kg.
16. See: Mylari, B. L.; Withbroe, G. J.; Beebe, D. A.; Brackett, N. S.; Conn, E. L.;
Coutcher, J. B.; Oates, P. J.; Zembrowski, W. J. Bioorg. Med. Chem. 2003, 11, 4179.
for permeability/absorption benefits by replacement of a pyrimidine with a
triazine.
Acknowledgments
The authors thank Ben Rocke and Zhengrong Zhao for the
preparation of compounds 5d and 5g, respectively and Drs. David
Hepworth, Allyn Londregan, and Kentaro Futatsugi for reviewing
the manuscript.
17. The rat pharmacodynamic assay is described in: Kim, D.; Wang, L.; Beconi, M.;
Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.;
Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S.
B.; Sinha Roy, R.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N.
A.; Weber, A. E. J. Med. Chem. 2005, 48, 141.
18. Human PK parameters were used to generate predicted plasma concentration
versus time profiles at varying doses of 5o (WinNonlin version 5.2, Pharsight
Corp.). The projected human plasma concentration data was then used to
predict the associated DPP-4 inhibition using the equation [i = 1/(1 + Ki/I)],
where ‘i’ is DPP-4 inhibition, ‘Ki’ is the value calculated from the in vitro IC50
value, and ‘I’ is the unbound plasma concentration.
19. Differential scanning calorimetry run on diazide intermediate 8 indicated a
moderate to high thermal energy release that was within 100 °C of the
processing temperature.
20. Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.; Nalbandian, A. Z.; Huang, X.
Chem. Eur. J. 2004, 10, 5581.
Supplementary data
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
References and notes
1. (a) Flier, J. S. Cell 2004, 116, 337; (b) Hogan, P.; Dall, T.; Nikolov, P. Diabetes Care
2003, 26, 917.
2. Flatt, P. R.; Bailey, C. J.; Green, B. D. Front. Biosci. 2008, 13, 3648.
3. Drucker, D. J. Endocrinology 2003, 144, 5145.
4. For comprehensive reviews on DPP-4 inhibitors, see: (a) Idris, I.; Donnelly, R.
Diabetes Obes. Metab. 2007, 9, 153; (b) von Geldern, T. W.; Trevillyan, J. M. Drug
Dev. Res. 2006, 67, 627; (c) Weber, A. E. J. Med. Chem. 2004, 47, 4135.
21. Ethyl 4-chloro-4-oxobutyrate was treated with TMS-diazomethane to afford
the alpha-chloroketone. Conversion of the ketone into the gem-difluoro was
accomplished using the DAST reagent and saponification (LiOH/H2O) afforded
the desired acid.