C O M M U N I C A T I O N S
Table 1. Preparation of Unsaturated Heterocycles According to eq
2
In conclusion, we report a simple procedure for the facile
preparation of unsaturated heterocyclic compounds having two
heteroatoms. The scope and limitations of the reaction itself and
the synthetic applications of the products obtained are now under
investigation.
Acknowledgment. The authors are grateful to Kyowa Hakko
Kogyo Co., Ltd. for financial support. This work was also supported
in part by a Grant-in-Aid for Scientific Research on Priority Areas
16073208 from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
Supporting Information Available: Experimental procedures and
physical properties of products. This material is available free of charge
References
(1) (a) Porter, A. E. A. ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, pp 157-
197. (b) Sainsburg, M. ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, pp 995-
1038. (c) Sharp, J. T. ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 7, pp 593-
651. (d) Katritzky, A. R., Ed. Chem. ReV. 2004, 104, 2125-2812.
(2) Double amination of olefins leading to the direct formation of diazacycles
has been recently reported: (a) Hamaguchi, H.; Kosaka, S.; Ohno, H.;
Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 1513-1517. (b) Streuff, J.;
Ho¨velmann, C. H.; Nieger, M.; Mun˜iz, K. J. Am. Chem. Soc. 2005, 127,
14586-14587. (c) Zabawa, T. P.; Chemler, S. R. Org. Lett. 2007, 9,
2035-2038. (d) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129,
762-763. However, the same type of reaction across an acetylenic bond
is rare. For example, see: (e) Lipshutz, B. H.; Taft, B. R. Angew. Chem.,
Int. Ed. 2006, 45, 8235-8238.
(3) For a recent preparation of similar heterocycles starting with terminal
acetylenes via olefin isomerization, see: Zulys, A.; Dochnahl, M.;
Hollmann, D.; Lo¨hnwitz, K.; Herrmann, J.-S.; Roesky, P. W.; Blechert,
S. Angew. Chem., Int. Ed. 2005, 44, 7794-7798.
(4) (a) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6, 727-
729. (b) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011-4014.
(c) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang,
J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003,
125, 2368-2369. (d) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L.
Org. Lett. 2003, 5, 3667-3669.
(5) For details, see the Supporting Information.
(6) The use of sulfonamides is essential for this reaction, as (CH2NHMs)2 in
place of 3 afforded the desired product like 4 in 58% yield, but (CH2-
NHR)2 (R ) Ac or Boc) did not give such products. For deprotection of
sulfonamides, see: Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in
Organic Synthesis, 2nd ed.; Wiley: New York, 1991; pp 379-385.
(7) The direction of this ring closure (paths a or b) is hardly predictable a
priori based on the available data such as those in refs 8 and 9.
(8) Both 6-endo-dig and 5-exo-dig are favorable modes for ring closure. For
Baldwin’s rule, see: (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun.
1976, 734-736. For 5-exo-dig cyclization with a nitrogen nucleophile,
see: (b) Schomaker, J. M.; Geiser, A. R.; Huang, R.; Borhan, B. J. Am.
Chem. Soc. 2007, 129, 3794-3795. For 6-endo-dig cyclization, see: (c)
Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed.
2006, 45, 3822-3825.
a Isolated yields, which are not necessarily optimized. b The methyl
positions have not been assigned to major and minor isomers, which were
separable by silica gel chromatography in 41% and 27% yields, respectively.
c N,N′-Di(1-octynyl)-N,N′-di(p-toluenesulfonyl)-1,3-propanediamine was
also formed in 13% yield. d This reaction was performed at 130 °C for
21 h.
(9) A nucleophile could be introduced to either 1- or 2-position of 1-(sulfo-
nylamino)-1-alkynes depending upon the kind of reactions. For a reaction
at the 1-position, see: (a) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.;
Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047-1050. For the 2-position,
see: (b) Chechik-Lankin, H.; Livshin, S.; Marek, I. Synlett 2005, 2098-
2100. For reviews on the chemistry of (1-alkynyl)amine derivatives, see:
(c) Katritzky, A. R.; Jiang, R.; Singh, S. K. Heterocycles 2004, 63, 1455-
1475. (d) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.;
Wei, L.-L. Tetrahedron 2001, 57, 7575-7606. (e) Hsung, R. P., Ed.
Tetrahedron 2006, 62, 3783-3938.
bromoacetylenes via dehydrobromination of dibromoolefins
under the basic reaction conditions prior to the catalytic cycle in
Scheme 1.12
(10) This outcome is consistent with that of the closely related cyclization of
ref 8b. For reviews on hydroamination of alkynes, see: (a) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. ReV. 2004, 104, 3079-3159. (b) Pohlki,
F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104-114.
(11) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769-3772.
(12) A normal double coupling of 1,1-dibromoolefin with a diamine derivative
was also reported: Yuen, J.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006,
8, 653-656. The different substrate structures and reaction media may
account for the change in the type of products.
JA078163B
9
J. AM. CHEM. SOC. VOL. 130, NO. 6, 2008 1821