spacing was conducted using the standard evaporated thallous
chloride, which has a largest first-order spacing diffraction of
0.384 nm. SAED pattern showed that a strong diffraction
appeared on the meridian at 0.870 nm with a second order
diffraction at 0.435 nm. The d-spacing of 0.870 nm is close to the
thickness of the porphyrin complex 7 (about 0.86 nm).
Therefore, we can conclude that the normal direction of the self-
assembled porphyrin complex is parallel to the wires long direction
and nanowires generated from the single column of porphyrin
complex (disc-shape) building block. Diffused diffractions at the
meridian and quadrants (0.212 and 0.286 nm, respectively) are
likely from the alkyl chains at the end of complex 7.15
Fig. 2 The proposed charge transfer through a DSSC by using sensitized
TiO2 electrodes with Zn–porphyrin–Stpy–RuII–tpyT complexes.
Notes and references
1 D. Gust and T. A. Moore, The Porphyrin Handbook: Electron Transfer,
ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San
Diego, 2000, Vol. 8, 153.
2 (a) J.-P. Collin, V. Heitz and J.-P. Sauvage, Tetrahedron Lett., 1991, 32,
5977; (b) J.-P. Collin, A. Harriman, V. Heitz, F. Odobel and
J.-P. Sauvage, J. Am. Chem. Soc., 1994, 116, 5679; (c) L. Flamigni,
N. Armaroli, F. Barigelletti, V. Balzani, J.-P. Collin, J.-O. Dalbavie,
V. Heitz and J.-P. Sauvage, J. Phys. Chem. B, 1997, 101, 5936; (d)
E. Baranoff, J.-P. Collin, L. Flamigni and J.-P. Sauvage, Chem. Soc.
Rev., 2004, 33, 147; (e) A. Harriman, F. Odobel and J.-P. Sauvage,
J. Am. Chem. Soc., 1995, 117, 9461; (f) L. Flamigni, F. Barigelletti,
N. Armaroli, J.-P. Collin, J.-P. Sauvage and J. A. G. Williams, Chem.–
Eur. J., 1998, 4, 1744.
3 C. M. Elliott, J. R. Dunkle and S. C. Paulson, Langmuir, 2005, 21, 8605.
4 E. B. Fleischer and A. M. Shachter, Inorg. Chem., 1991, 30, 3763.
5 (a) A. de la Hoz, A. D´ıax-Ortiz and A. Moreno, Chem. Soc. Rev., 2005,
34, 164; (b) C. O. Kappe, Angew. Chem., Int. Ed., 2004, 43, 6250; (c)
N. N. Romanova, A. G. Gravis and N. V. Zyk, Russ. Chem. Rev., 2005,
74, 969.
6 (a) W. Sphani and G. Galzaferri, Helv. Chim. Acta, 1984, 67, 450; (b)
G. R. Newkome, T. J. Cho, C. N. Moorefield, R. Cush, P. S. Russo,
L. A. Godinez, M. J. Saunders and P. Mohapatra, Chem.–Eur. J., 2002,
8, 2946.
7 V. Heitz, S. Chardon-Nobalt and J.-P. Sauvage, Tetrahedron Lett.,
1991, 32, 197.
Fig. 3 TEM image of the self-assembled nanowires constructed using the
discotic porphyrin complex 7. The inset image is the SAED of the bundle
of nanowires taken in the circled region of Fig. 3. Here, WD indicates the
wires long direction.
8 E. C. Constable, P. Harverson, D. R. Smith and L. Whall, Polyhedron,
1997, 16, 3615.
9 G. R. Newkome, E. He, L.A. God´ınez and G. R. Baker, J. Am. Chem.
Soc., 2000, 5(122), 9993.
10 S.-H. Hwang, P. Wang, C. N. Moorefield, L. A. God´ınez, J. Manr´ıquez,
E. Bustos and G. R. Newkome, Chem. Commun., 2005, 4672.
11 (a) P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser and
M. Gra¨tzel, Adv. Mater., 2003, 15, 2101; (b) V. Aranyos, J. Hajelm,
A. Hagfeldt and H. Grennberg, Dalton Trans., 2003, 1280.
12 (a) F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo
and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87, 117; (b)
Q. Wang, J.-E. Moser and M. Gra¨tzel, J. Phys. Chem. B, 2005, 109,
14945.
13 A. F. Nogueira, A. L. B. Formiga, H. Winnischofer, M. Nakamura,
F. M. Englmann, K. Araki and H. E. Toma, Photochem. Photobiol.
Sci., 2004, 3, 56.
14 M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner,
H. Du¨rr, Y.-Z. Hu and S. H. Bossmann, J. Am. Chem. Soc., 2000, 122,
11480.
this process was interrupted.13 From this observation, we propose
an electron transfer mechanism, which assumes that electrons
introduced into the Stpy–RuII–tpyT moiety can be transfered to
the TiO2 through the Zn–porphyrins.14 This porphyrin-containing
transition metal polypyridinyl device (Fig. 2) is a potential
‘‘switch’’ for controlling charge transfer between ‘‘electron
containers’’ (Stpy–RuII–tpyT) and ‘‘electron acceptors’’ (TiO2
films).
Fig. 3 shows a TEM image of the self-assembled nanowires with
a width of ca. 7 nm, which is comparable to the diameter of
porphyrin complex 7, and 0.3–0.5 mm in length. In order to know
the detailed molecular packing inside these nanowires, selected
area electron diffraction (SAED) was conducted in the region
shown in the inset of Fig. 3. Based on the morphological
observation and its SAED, the wires long direction is in the
meridian direction of the SAED pattern. Calibration of the SAED
15 Support generously provided by NSF DMR-041780, -0705015, INT-
0405242, and AFOSR F49620-02-1-0428,02.
4458 | Chem. Commun., 2007, 4456–4458
This journal is ß The Royal Society of Chemistry 2007