LETTER
Nucleophilic Additions to Pyrroline N-Oxides
2653
Having shown that a phenyl group at C-2 of the pyrrol-
idine ring can be efficiently introduced, we targeted the
natural radicamine B. The synthesis of that compound is
straightforward and has been achieved in two steps from
nitrone 5 as depicted in Scheme 6. The addition of 4-ben-
zyloxyphenylmagnesium bromide15 to 5 took place with
complete selectivity affording hydroxylamine 18. The ste-
reochemical outcome of the reaction is explained well by
invoking a Felkin–Anh-type transition-state model with
attack of the nucleophile from the less hindered face.4,16
Acknowledgment
We thank for their support of our programs: the Spanish Ministry of
Science and Education (MEC. Madrid, Spain), FEDER Program
and the Government of Aragon (Zaragoza, Spain) and MiUR
(Italy). One of us (I.D.) also thanks Gobierno de Aragon and the
Socrates/Erasmus exchange program for grants.
References and Notes
(1) (a) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J.
Tetrahedron: Asymmetry 2000, 11, 1645. (b) Watson, A.
A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J.
Phytochemistry 2001, 56, 265. (c) Asano, N. Curr. Top.
Med. Chem. 2003, 3, 471. (d) Ayad, T. Y.; Genisson, Y.;
Baltas, M. Curr. Org. Chem. 2004, 8, 1211. (e) de Melo, E.
B.; Domes, A. da S.; Carvalho, I. Tetrahedron 2006, 62,
10277. (f) Caines, M. E. C.; Hancock, S. M.; Tarling, C. A.;
Wrodnigg, T. M.; Stick, R. V.; Stütz, A. E.; Vasella, A.;
Withers, S. G.; Strynadka, N. C. J. Angew. Chem. Int. Ed.
2007, 46, 4474.
(2) (a) Stütz, A. E. Iminosugars as Glycosidase Inhibitors:
Nojirimycin and Beyond; Wiley-VCH: Weinheim, 1999.
(b) Compain, P.; Martin, O. R. Iminosugars: From Synthesis
to Therapeutic Applications; Wiley: Chichester, 2007, in
press.
BnO
OBn
i
5
92%
N
BnO
OH
18
ii 100%
OBn
HO
OH
HO
OH
Cl
iii
99%
N
N
H
H2
HO
radicamine B (2)
HO
OH
OH
2 · HCl
(3) (a) Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.;
Kusano, G. Chem. Pharm. Bull. 2001, 49, 1362.
Scheme 6 Reagents and conditions: i) 4-BnOC6H4MgBr, THF,
0 °C; ii) H2 (5 atm), Pd(OH)2–C, HCl–MeOH, r.t.; iii) Dowex 5WX8-
200, NH4OH (1 N).
(b) Shibano, M.; Tsukamoto, D.; Kusano, G. Heterocycles
2002, 57, 1539. (c) Chandrasekar, S.; Jagadeshwar, V.;
Prakash, S. J. Tetrahedron 2005, 46, 3127. (d) Haddad, M.;
Larcheveque, M. Synlett 2003, 274. (e) Toyao, A.; Tamura,
O.; Tagaki, H.; Ishibashi, H. Synlett 2003, 35. (f) Severino,
E. A.; Correia, C. R. D. Org. Lett. 2000, 2, 3039. (g) See
also ref. 5 and 6.
Natural radicamine B was obtained in only one additional
step consisting of catalytic hydrogenation in HCl–MeOH
in the presence of 10 mol% Pearlman’s catalyst. By using
this catalyst [Pd(OH)2–C], instead of those previously
(4) Goti, A.; Cicchi, S.; Mannucci, V.; Cardona, F.; Guarna, F.;
Merino, P.; Tejero, T. Org. Lett. 2003, 5, 4235.
5
reported (PdCl2 and Pd–C6), radicamine B was isolated
as the corresponding hydrochloride in high overall yield
(92%, 2 steps, Scheme 6).17 Although isolation of radi-
camine B (2) as hydrochloride is justified by its higher
stability, the free amine was obtained by elution through a
ion-exchange column (Dowex 5WX8-200) with 1 N
NH4OH. Synthesized radicamine B (2) showed identical
physicochemical data to those reported for the natural
compound3a,17 and for the enantiomer,5,6,17 in the last case
with exception of the opposite sign of optical rotation.
(5) Gurjar, M. K.; Borhade, R. G.; Puranik, V. G.; Ramana, C.
V. Tetrahedron Lett. 2006, 47, 6979.
(6) Yu, C.-Y.; Huang, M.-H. Org. Lett. 2006, 8, 3021.
(7) In their original papers, appeared during the preparation of
this manuscript, Gurjar (ref. 5) and Yu (ref. 6) reported the
synthesis of the enantiomers of the natural products since
they started from ent-5, synthesizing ent-1 and ent-2. Indeed,
Yu et al. (ref. 6) revised the configuration of both natural
radicamines A and B as those given in Figure 1.
(8) (a) Cardona, F.; Faggi, E.; Liguori, F.; Cacciarini, M.; Goti,
A. Tetrahedron Lett. 2003, 44, 2315. (b) Carmona, A. T.;
Whigtman, R. H.; Robina, I.; Vogel, P. Helv. Chim. Acta
2003, 86, 3066. (c) Desvergnes, S.; Py, S.; Vallée, Y. J. Org.
Chem. 2005, 70, 1459. (d) Cicchi, S.; Marradi, M.; Vogel,
P.; Goti, A. J. Org. Chem. 2006, 71, 1614. (e) Revuelta, J.;
Cicchi, S.; Goti, A.; Brandi, A. Synthesis 2007, 485.
(9) Data for 8: [a]D20 +57 (c 1.11, H2O). 1H NMR (400 MHz,
D2O): d = 3.63 (ddd, J = 8.2, 5.5, 4.1 Hz, 1 H, H5), 3.83 (dd,
J = 13.3, 6.3 Hz, 1 H, CH2OH), 3.88 (dd, J = 13.3, 4.5 Hz, 1
H, CH2OH), 4.11 (t, J = 7.5 Hz, 1 H, H4), 4.39 (d, J = 9.9 Hz,
1 H, H2), 4.43 (dd, J = 10.0, 6.9 Hz, 1 H, H3), 7.37–7.47 (m,
5 H, Ar). 13C NMR (100 MHz, D2O): d = 58.1 (CH2OH),
61.9 (C2), 63.2 (C5), 73.7 (C3), 77.5 (C4), 128.3 (Ar), 128.5
(Ar), 130.3 (Ar), 131.3 (Ar). Anal. Calcd for C11H16NO3Cl:
C, 53.77; H, 6.56; N, 5.70. Found: C, 53.92; H, 6.74; N, 5.68.
(10) Marradi, M.; Cicchi, S.; Delso, I.; Rosi, L.; Tejero, T.;
Merino, P.; Goti, A. Tetrahedron Lett. 2005, 46, 1287.
(11) (a) Goti, A.; Cicchi, S.; Fedi, V.; Nannelli, L.; Brandi, A. J.
Org. Chem. 1997, 62, 3119. (b) Cicchi, S.; Goti, A.; Brandi,
A. J. Org. Chem. 1995, 60, 4743.
In conclusion, we have established an efficient oxidation–
reduction protocol for the preparation of unfavorable dia-
stereomers of polyhydroxylated pyrrolidines according to
the more expeditious approach for those compounds, con-
sisting of the nucleophilic addition of an organometallic
reagent to a cyclic nitrone. Taking advantage of the ex-
cellent selectivity offered by polyhydroxylated cyclic
nitrones in nucleophilic addition reactions, natural radi-
camine B has been synthesized, thus demonstrating their
previously assigned revised configuration.6 The synthesis
of other 2-aryl polyhydroxylated pyrrolidines with differ-
ent configurations at the stereogenic centers of the pyr-
rolidine ring is under investigation in our laboratories.
Synlett 2007, No. 17, 2651–2654 © Thieme Stuttgart · New York