10.1002/anie.201914233
Angewandte Chemie International Edition
COMMUNICATION
of our knowledge, that demonstrate redox-active behavior of
TCNQ- and C60-integrated COFs.
performed on an HPC cluster funded by the National Science
Foundation under Grant No. CHE-1048629.
The aforementioned results demonstrate preparation of the
first family members of purely organic, crystalline, porous
scaffolds with covalently bound TCNQ and C60 moieties;
integration of the latter ones not only resulted in increases in
conductivity by eight-orders-of-magnitude, but affect the redox
behavior of the material. Moreover, the interior of a COF was
harnessed for the first time to perform a Sonogashira cross-
coupling and [2+2] cycloaddition reactions, followed by ring
opening of a strained intermediate in the case of the latter. The
former reaction was probed for fluorophore tag integration that
opens an avenue to control reaction progress inside of the COF.
Notably, the reported purely organic covalently-integrated-
acceptor scaffolds have the highest surface area and they are the
first buckyball- and TCNQ-integrated COFs that exhibit redox
behavior to date. Our theoretical analysis probing charge transfer
rates within the Marcus theory as a function of TCNQ stacking
within COFs showed a 32-fold increase in electron transfer rates
compared to the parent COF itself. Despite the theory limitations,
it is the first successful attempt to explain charge transfer in COFs
using the Marcus theory that paves the way for further simulations
of electronic structures and CT studies of hierarchical materials.
Shifting from “static” tuning of the electronic structure, dynamic
control of electronic properties in COFs as a function of external
stimulus was achieved through spiropyran guest infiltration in the
porous scaffold. Overall, this work demonstrates the potential for
donor-acceptor alignment on the example of buckyball- and
TCNQ-electron acceptors and COF-based donors for the
development of porous and crystalline materials with tunable
electronic structures that could open a new avenue for the rational
design of electroactive and conductive multidimensional and
multifunctional crystalline porous materials.
Keywords: covalent-organic framework • donor acceptor
interactions • electronic structure • fulleretic materials • redox-
active
[1]
M. Matsumoto, R. R. Dasari, W. Ji, C. H. Feriante, T. C. Parker, S. R.
Marder, W. R. Dichtel, J. Am. Chem. Soc. 2017, 139, 4999–5002.
C. R. DeBlase, W. R. Dichtel, Macromolecules 2016, 49, 5297–5305.
A. J. Howarth, C. T. Buru, Y. Liu, A. M. Ploskonka, K. J. Hartlieb, M.
McEntee, J. J. Mahle, J. H. Buchanan, E. M. Durke, S. S. Al-Juaid, J. F.
Stoddart, J. B. DeCoste, J. T. Hupp, O. K. Farha, Chem. Eur. J. 2017,
23, 214–218.
[2]
[3]
[4]
[5]
S. B. Alahakoon, C. M. Thompson, G. Occhialini, R. A. Smaldone,
ChemSusChem 2017, 10, 2116–2129.
S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I.
Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 2018, 140,
14614–14618.
[6]
H. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen, J. Cure, E. V. Alexandrov,
Q. Xia, K. Tan, Q. Wang, D. H. Olson, D. M. Proserpio, Y. J. Chabal, T.
Thonhauer, J. Sun, Y. Han, J. Li, Nat. Commun. 2018, 9, 1745.
Y. Wang, X. Zhao, H. Yang, X. Bu, Y. Wang, X. Jia, J. Li, P. Feng, Angew.
Chem. Int. Ed. 2019, 58, 6316–6320.
[7]
[8]
[9]
O. V. Boltalina, A. A. Popov, I. V. Kuvychko, N. B. Shustova, S. H.
Strauss, Chem. Rev. 2015, 115, 1051−1105.
S. A. Baudron, CrystEngComm 2016, 18, 4671–4680.
[10] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A.
Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
[11] M. A. Petrukhina, Dalton. Trans., 2019, 48, 5125–5130.
[12] J. Kurpiers, T. Ferron, S. Roland, M. Jakoby, T. Thiede, F. Jaiser, S.
Albrecht, S. Janietz, B. A. Collins, I. A. Howard, D. Neher, Nat. Commun.
2018, 9, 2038.
[13] M. Adams, N. Baroni, M. Oldenburg, F. Kraffert, J. Behrends, R. W.
MacQueen, R. Haldar, D. Busko, A. Turshatov, G. Emandi, M. O. Senge,
C. Wöll, K. Lips, B. S. Richards, I. A. Howard, Phys. Chem. Chem. Phys.,
2018, 20, 29142–29151.
[14] D. E. Williams, E. A. Dolgopolova, D. C. Godfrey, E. D. Ermolaeva, P. J.
Pellechia, A. B. Greytak, M. D. Smith, S. M. Avdoshenko, A. A. Popov,
N. B. Shustova, Angew. Chem. Int. Ed. 2016, 55, 9070–9074.
[15] J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D. M. Guldi, E. Nakamura,
Nat. Chem. 2014, 6, 899–905.
Experimental Section
Full experimental details can be found in the Supporting Information.
CCDC
1883088
for
2-(4-(4,4-dicyano-2-(4-
[16] C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, J. Mater. Chem. 2012, 22, 4161–4177.
[17] C. D. Wessendorf, R. Eigler, S. Eigler, J. Hanisch, A. Hirsch, E. Ahlswede,
Sol. Energy Mater. Sol. Cells 2015, 132, 450–454.
(dimethylamino)phenyl)butylidene)cyclohexa-2,5-dien-1-
ylidene)malononitrile contains the supporting crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
[18] A. Hirsch, The Chemistry of Fullerenes, John Wiley And Sons, Inc., 2008.
[19] D. M. Guldi, Chem. Commun. 2000, 321–327.
[20] D. Josa, J. Rodríguez-Otero, E. M. Cabaleiro-Lago, L. A. Santos, T. C.
Ramalho, J. Phys. Chem. A 2014, 118, 9521−9528.
[21] H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y.
Yi, H. Liu, Y. Li, ACS Appl. Mater. Interfaces 2016, 8, 5366–5375.
[22] H. S. Sasmal, H. B. Aiyappa, S. N. Bhange, S. Karak, A. Halder, S.
Kurungot, R. Banerjee, Angew. Chem. Int. Ed. 2018, 57, 10894–10898.
[23] S.-L. Cai, Y.-B. Zhang, A. B. Pun, B. He, J. Yang, F. M. Toma, I. D. Sharp,
O. M. Yaghi, J. Fan, S.-R. Zheng, W.-G. Zhang, Y. Liu, Chem. Sci., 2014,
5, 4693–4700.
Acknowledgements
This work was supported by the NSF CAREER Award (DMR-
1553634). N.B.S thanks the Cottrell Scholar Award from the
Research Corporation for Science Advancement, Sloan
Research Fellowship provided by Alfred P. Sloan Foundation, and
Camille Dreyfus Teaching-Scholar Award provided by Henry and
Camille Dreyfus Foundation. This material is based upon work
partially supported by the National Science Foundation under
Grant CHE-1565985, and in part by the National Science
Foundation EPSCoR Program under NSF Award OIA-1655740.
M.S. and B.W.L. acknowledge support of National Science
Foundation under NSF Award DMR-1752615. This work made
use of the South Carolina SAXS Collaborative. We also
acknowledge USC's XPS user facility, as well as Dr. Stavros
Karakalos for his help at the facility. Computations were
[24] S. Duhović, M. Dincă, Chem. Mater. 2015, 27, 5487–5490.
[25] H. Guo, J. Wang, Q. Fang, Y. Zhao, S. Gu, J. Zheng, Y. Yan,
CrystEngComm, 2017, 19, 4905–4910.
[26] D. A. Vazquez-Molina, G. S. Mohammad-Pour, C. Lee, M. W. Logan, X.
Duan, J. K. Harper, F. J. Uribe-Romo, J. Am. Chem. Soc. 2016, 138,
9767–9770.
[27] E. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu,
T. Nakamura, T. Heine, Q. Chen, D. Jiang, Science 2017, 357, 673–676.
[28] X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev., 2012, 41, 6010–6022.
[29] M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553.
[30] R. P. Bisbey, W. R. Dichtel, ACS Cent. Sci. 2017, 3, 533–543.
5
This article is protected by copyright. All rights reserved.