coordinated water molecule) for a model complex, unprecedented
for macromolecular conjugates of similar or even larger molecular
weight (Fig. 2). Finally, these results suggest that a further
refinement of the electronic relaxation should allow attainment of
relaxivities close to or above 100 mM21 s21
.
We thank MIUR (PRIN 2005: 2005039914) for financial
support. This work was performed within the frame of EU COST
Action D-38.
Notes and references
1 (a) S. Aime, M. Botta, M. Fasano and E. Terreno, Chem. Soc. Rev.,
1998, 27, 19–29; (b) P. Caravan, J. J. Ellison, T. J. McMurry and
R. B. Lauffer, Chem. Rev., 1999, 99, 2293–2352; (c) D. Parker,
R. S. Dickins, H. Puschmann, C. Crossland and J. A. K. Howard,
Chem. Rev., 2002, 102, 1977–2010.
2 The Chemistry of Contrast Agents in Medical Magnetic Resonance
Imaging, ed. E. Toth and A. E. Merbach, Wiley, New York, 2001.
3 R. B. Lauffer, Chem. Rev., 1987, 87, 901–927.
Fig. 2 Plot of the proton relaxivity r1p for selected macromolecular Gd-
complexes at 20 MHz and 310 K. Data taken from ref. 1b.(1) GdDTPA–
PEG I–polylysine (linear synthetic polymer); (2) Gadomer 17 (dendrimer)
(3) G4([NCS]N-bz-GdDO3A)38 (dendrimer); (4) MS-325-HSA (non-
covalently bound to HSA adduct); (5) Albumin–GdDTPA (covalently
bound to HSA macromolecular system); (6) MPEG–PL–GdDTPA (linear
synthetic polymer).
4 P. Caravan, Chem. Soc. Rev., 2006, 35, 512–523.
5 S. Aime, M. Botta and E. Terreno, Gd(III)-based Contrast Agents for
MRI, in Advances in Inorganic Chemistry, ed. R. van Eldik and
I. Bertini, Elsevier, San Diego, 2005, vol. 57, pp. 173–237.
6 (a) S. Aime, M. Botta, M. Fasano and E. Terreno, Acc. Chem. Res.,
1999, 32, 941–949; (b) L. Helm and A. E. Merbach, Chem. Rev., 2005,
105, 1923–1959.
7 S. Aime, M. Botta, M. Fasano and E. Terreno, in The Chemistry of
Contrast Agents in Medical Magnetic Resonance Imaging, ed. E. Toth
and A. E. Merbach, Wiley, New York, 2001, ch. 5, pp. 193–242.
reorientation of the protein,17 whereas tRL and S2 were used as
variable parameters. The results are given in Table 2 and are in full
agreement with the expected higher degree of rigidity of GdL1 at
the binding site, as indicated by the significantly longer values of
tRL (6.0 vs. 1.1 ns) and S2 (0.60 vs. 0.31).
´
8 S. Laus, A. Sour, R. Ruloff, E. To´th and A. E. Merbach, Chem.–Eur. J.,
2005, 11, 3064–3076.
9 S. Torres, J. A. Martins, J. P. Andre´, C. F. G. C. Geraldes,
Preliminary molecular modelling studies based on docking of
GdL1 and GdL2 to HSA are in agreement with relaxometric
experimental results. GdL1 is held fixed inside the entrance of the
binding pocket, allowing very small rotational movements. On
the other hand, GdL2 is more flexible and the interaction with
the HSA binding pocket leaves the cage free to rotate outside the
binding site, explaining the shorter tRL for this complex. Thus, the
different rotational dynamics arising from the different flexibility
of the targeting groups fully accounts for the different observed
relaxivities of GdL1 and GdL2 bound to HSA.
´
A. E. Merbach and E. To´th, Chem.–Eur. J., 2006, 12, 940–948.
10 J. Rudovsky´, M. Botta, P. Hermann, K. I. Hardcastle, I. Lukeˇs and
S. Aime, Bioconjugate Chem., 2006, 17, 975–987.
11 D. E. Prasuhn, Jr., R. M. Yeh, A. Obenaus, M. Manchester and
M. G. Finn, Chem. Commun., 2007, 1269–1271.
12 Z. Zhang, M. T. Greenfield, M. Spiller, T. J. McMurry, R. B. Lauffer
and P. Caravan, Angew. Chem., Int. Ed., 2005, 44, 6766–6769.
13 S. Aime, A. Barge, A. Borel, M. Botta, S. Chemerisov, A. E. Merbach,
U. Mu¨ller and D. Pubanz, Inorg. Chem., 1997, 36, 5104–5112.
14 D. H. Powell, O. M. Ni Dhubhghaill, D. Pubanz, L. Helm,
Y. S. Lebedev, W. Schlaepfer and A. E. Merbach, J. Am. Chem.
Soc., 1996, 118, 9333–9346.
This work shows for the first time that it is possible to achieve
relaxivity values very close to those predicted by theory by
controlling not only the rate of water exchange but also the
rotational dynamics of the system. The relevant result is the
remarkable gain in relaxivity observed (per Gd and per
15 S. H. Koenig and D. R. Brown, III, Prog. Nucl. Magn. Reson.
Spectrosc., 1990, 22, 487–567.
16 (a) G. Lipari and A. Szabo, J. Am. Chem. Soc., 1982, 104, 4546–4559;
(b) G. Lipari and A. Szabo, J. Am. Chem. Soc., 1982, 104, 4559–4570.
17 J. D. Dattelbaum, O. O. Abugo and J. R. Lakowicz, Bioconjugate
Chem., 2000, 11, 533.
4728 | Chem. Commun., 2007, 4726–4728
This journal is ß The Royal Society of Chemistry 2007