C O M M U N I C A T I O N S
new compounds. This material is available free of charge via the Internet
We later established that (-)-29 could be converted directly to (-)-
33 in one step via the Grieco-Nishizawa protocol.27 Allylic
oxidation28 of (-)-33 next led to a mixture (2.5:1) of the desired
secondary allyl alcohol (62%, borsm), along with the regioisomeric
References
29
tertiary allylic alcohol. Rearrangement of the former with SOCl2
(1) (a) Imai, H.; Suzuki, K.; Morioka, M.; Numasaki, Y.; Kadota, S.; Nagai,
K.; Sato, T.; Iwanami, M.; Saito, T. J. Antibiot. 1987, 40, 1475. (b) Imai,
H.; Kaniwa, H.; Tokunaga, T.; Fujita, S.; Furuya, T.; Matsumoto, H.;
Shimizu, M. J. Antibiot. 1987, 40, 1483. (c) For a related structure,
chrolactomycin, see: Nakai, R.; Kakita, S.; Asai, A.; Chiba, S.; Akinaga,
S.; Mizukami, T.; Yamashita, Y. J. Antibiot. 2001, 54, 836.
(2) (a) Takeda, K.; Shimotani, A.; Yoshii, E. Heterocycles 1992, 34, 2259.
(b) Paquette, L. A.; Boulet, S. L. Synthesis 2002, 888. (c) Paquette, L.
A.; Boulet, S. L. Synthesis 2002, 895.
(3) For recent reviews on the utility of the RCM for macrocycle construction,
see: (a) Gradillas, A.; Pe´rez-Castells, J. Angew. Chem., Int. Ed. 2006,
45, 6086. (b) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104, 2199.
(4) (a) Petasis, N. A.; Lu, S. P. Tetrahedron Lett. 1996, 37, 141. (b) Ferrier,
R. J.; Middleton, S. Chem. ReV. 1993, 93, 2779. (c) For an extension of
this methodology to the conversion of cyclopropyl diols to oxepanes,
see: O’Neil, K. E.; Kingree, S. V.; Minbiole, K. P. C. Org. Lett. 2005, 7,
515.
furnished allylic chloride (-)-34, securing the requisite trisubstituted
C(16)-C(17) olefin required for okilactomycin (1). Installation of
a phenyl selenide at C(9), followed by Ganem oxidation,30 provided
aldehyde (-)-35, which upon selenoxide elimination and Pinnick
oxidation31 completed construction of (-)-okilactomycin (1),1
spectroscopically identical in all respects (1H, 13C, HRMS) to an
authentic sample obtained from the natural source,1a with exception
of the chiroptic properties {[R]20D ) -37 (c ) 0.03, MeOH); lit.1a
[R]20 ) +34 (c ) 1, MeOH)}.
D
Scheme 6
(5) (a) Smith, A. B., III; Verhoest, P. R.; Minibiole, K. P.; Lim, J. J. Org.
Lett. 1999, 1, 909. (b) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.;
Beauchamp, T. J. Org. Lett. 1999, 1, 913. (c) Smith, A. B., III; Minbiole,
K. P.; Verhoest, P. R.; Schelhass, M. J. Am. Chem. Soc. 2001, 123, 10942.
(d) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc.
2002, 124, 11102. (e) Smith, A. B., III; Sfouggatakis, C.; Gotchev, D.
B.; Shirakami, S.; Bauer, D.; Zhu, W.; Doughty, V. A. Org. Lett. 2004,
6, 3637. (f) Smith, A. B., III; Mesaros, E. F.; Meyer, E. A. J. Am. Chem.
Soc. 2005, 127, 6948. (g) Smith, A. B., III; Simov, V. Org. Lett. 2006, 8,
3315.
(6) Myers, A. G.; Yang, B. H.; Chen, H.; Mckinstry, L.; Kopecky, D. J.;
Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(7) Yao, G.; Steliou, K. Org. Lett. 2002, 4, 485.
(8) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
(9) (a) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1997, 119, 7165. (b)
Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252. (c) Kozmin,
S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562. (d) For an early
racemic version of this Diels-Alder tactic, see: Smith, A. B., III; Wexler,
B. A.; Tu, C.-Y.; Konopelski, J. P. J. Am. Chem. Soc. 1985, 107, 1308.
(10) Crisp, G. T.; Scott, W. J. Synthesis 1985, 335.
(11) (a) Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 7175.
(b) Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452.
(12) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc.
1989, 111, 5493.
(13) (a) Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765. For a
review on anionic oxy-Cope, see: Paquette, L. A. Tetrahedron 1997, 53,
13971.
(14) (a) Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett.
1974, 15, 4319. (b) Hassner, A.; Reuss, R. H.; Pinnick, H. W. J. Org.
Chem. 1975, 40, 3427.
(15) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172.
(16) Benzyl ether 6b was prepared by treatment of intermediate tertiary alcohol
with NaH and BnBr in 94% yield.
(17) Wo¨lfling, J.; Frank, EÄ .; Mernya´k, E.; Bunko´czi, G.; Seijo, J. A. C.;
Schneider, G. Tetrahedron 2002, 58, 6851.
(18) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
(19) Reich, H. J.; Clark, M. C.; Willis, W. W., Jr. J. Org. Chem. 1982, 47,
1618.
(20) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
(21) Davis, F. A.; Stringer, O. D.; Billmers, J. M. Tetrahedron Lett. 1983, 24,
1213. Other oxidants (e.g., H2O2, m-CPBA, NaIO4) gave poor yields.
(22) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta,
K. L. Tetrahedron Lett. 2000, 41, 169.
(23) Cf. Goldsmith, D. J.; John, T. K.; Van Middlesworth, F. Synth. Commun.
1980, 10, 551.
(24) Barco, A.; Benetti, S.; Pollini, G. P. Synthesis 1973, 316.
(25) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2000, 122, 8168.
In summary, the first total synthesis of (-)-okilactomycin (1)
has been achieved. Key features of this synthetic venture include
a highly diastereoselective oxy-Cope rearrangement/oxidation
sequence to secure the C(1) and C(13) stereocenters, a Petasis-
Ferrier union/rearrangement to construct the highly congested 2,6-
cis-tetrahydropyranone ring, a novel tactic to elaborate the fused
bicyclic lactone, and an efficient RCM reaction to generate the 13-
membered macrocyclic ring. The longest linear sequence proceeded
in 29 steps. Importantly, this synthetic venture not only provides a
viable route to this interesting antitumor antibiotic, as well as to
potential analogues thereof, but also establishes the absolute
stereochemistry of natural (+)-okilactomycin (1).
(26) (a) Reich, H. J.; Wollowitz, S. In Organic Reactions; Paquette, L. A.,
Ed.; John Wiley & Sons: New York, 1993; p 1. (b) Clive, D. L. J.
Tetrahedron 1978, 34, 1049. (c) Curtis, N. R.; Holmes, A. B.; Looney,
M. G. Tetrahedron 1991, 47, 7171. (d) Hirsenkorn, R.; Schmidt, R. R.
Leibigs Ann. Chem. 1990, 883.
Acknowledgment. Support was provided by the National
Institutes of Health (National Cancer Institute) through Grant CA-
19033, and by a postdoctoral fellowship (CA-101532) to T.B. We
also thank Drs. G. Furst, R. K. Kohli, and P. Carroll for assistance
in obtaining NMR spectra, high-resolution mass spectra, and X-ray
crystallographic data, respectively. We also appreciate the assistance
of Dr. Jim Hall from AstraZeneca to obtain NMR spectra. Finally,
we thank the Yamanouchi Pharmaceutical Co., Ltd. (now Astellas
Pharmaceutical Co.) for an authentic sample of (+)-okilactomycin.
(27) Grieco, P. A.; Nishizawa, M. J. Org. Chem. 1977, 42, 1717.
(28) Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526.
(29) For representative examples, see: (a) Young, W. G.; Caserio, F.; Brandon,
D. Science 1953, 117, 473. (b) Young, W. G.; Caserio, F.; Dennis, G. E.;
DeWolfe, R. H. J. Am. Chem. Soc. 1955, 77, 4182. (c) Ireland, R. E.;
Wrigley, T. I.; Young, W. G. J. Am. Chem. Soc. 1958, 80, 4604. (d)
Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A.
L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.
(30) (a) Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1990, 31, 4825. (b)
Griffith, W. P.; Jolliffe, J. M.; Ley, S. V.; Springhorn, K. F.; Tiffin, P. D.
Synth. Commun. 1992, 22, 1967. (b) Paquette, W. D.; Taylor, R. E. Org.
Lett. 2004, 6, 103.
(31) Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981, 37,
2091.
Supporting Information Available: Experimental procedures and
spectroscopic and analytical data for key transformations and related
JA077569L
9
14874 J. AM. CHEM. SOC. VOL. 129, NO. 48, 2007