ACS Combinatorial Science
LETTER
Table 4. Antiplatelet Data Obtained for Representative
Pyridazin-3-one/chalcone Hybrids
’ ACKNOWLEDGMENT
This work was financially supported by the Fondo Europeo de
Desarrollo Social (FEDER) and the Galician Government. J.A.
thanks Fundayacucho (Venezuela) for a predoctoral grant. E.S. is
the recipient of a Consolidation Group Research Grant from the
Conselleria de Educaciꢀon (Xunta de Galicia). E.S. and A.C. are
researchers of the Isidro Parga Pondal program (Xunta de
Galicia, Spain).
cmpd
R2
R6
Y
IC50 (μM)a
’ REFERENCES
A4D3
A4D5
B4E3
B4E5
A1D4
A1D5
A3D2
A5D3
A2D2
A2D7
B1E8
B3E4
B3E5
H
Ph
Ph
Ph
Ph
H
4-Br-Ph
12.27 ( 0.36
3.44 ( 0.04
9.23 ( 0.84
5.51 ( 0.83
4.65 ( 0.35
3.69 ( 0.63
10.97 ( 1.58
7.64 ( 0.52
4.94 ( 0.29
11.72 ( 1.11
6.21 ( 2.65
5.56 ( 0.65
4.12 ( 1.03
509.10 ( 49.00
(1) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach,
A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J.
J. Chem. Soc., Perkin Trans. 1 2000, 3815–4195, and references cited
therein.
H
Ph-2,4-Cl
4-Br-Ph
H
H
Ph-2,4-Cl
Ph-4-Cl
(2) Ley, S. Il Farmaco 2002, 57, 321–330.
Me
(3) Corma, A.; Garcia, H. Adv. Synth. Catal. 2006, 348, 1391–1412.
(4) (a) Jones, G. Organic Reactions; Wiley: New York, 1967; Vol. 15,
pp 204-599. (b) House, H. O. Modern Synthetic Reactions, 2nd ed.;
Benjamin: Menlo Park, 1972; pp 646-653. (c) McDonald, I. M.
Knoevenagel Reaction; Wiley: Wallingford, 2009; pp 474-501.
(5) Tietze, L. F.; Beifuss, U. Comprehensive Organic Synthesis; Pergamon
Press: Oxford, 1991; Vol. 2, pp 341-394.
(6) (a) Mahrwald, R. Modern Aldol Reactions; Wiley: Weinheim,
2004; Vol. 1-2, p 1218.Claisen, L.; Claparede, A. Ber. 1881, 14, 2460–
2667. (b) Schmidt, J. G. Ber. 1881, 14, 1459–1472. (c) Kohler, E. P.;
Chadwell, H. M. Organic Syntheses 1941, 1, 71–73. (d) Wurm, G.;
Lachmann, Ch. Arch. Pharm. 1974, 307, 695–700.
Me
H
Ph-2,4-Cl
Ph-4-OMe
Ph-4-Br
Ph
H
Ph
H
Bn
H
Ph-4-OMe
2-Furyl
Bn
H
Me
H
2-Thienyl
Ph-4-Cl
Ph
Ph
H
H
Ph-2,4-Cl
Sulfinpyrazone
a Mean ( SEM of five separate determinations, IC50 value ( μM)
interpolated from concentration-inhibition curves.
(7) Sadeghi, B.; Mirjalili, B. F.; Hashemi, M. M. J. Iran. Chem. Soc.
2008, 5, 694–698, and references cited therein.
(8) (a) Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko,
S. E.; Shivanyuk, A. N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073–
1078, and references cited therein. (b) Freeman, F. Chem. Rev. 1981, 80,
329–350.
(9) (a) Gupta, R.; Gupta, M.; Paul, S.; Rajive, G. Bull. Korean Chem.
Soc. 2009, 30, 2419–2421. (b) Isobe, K.; Hoshi, T.; Suzuki, T.; Hagiwara,
H. Mol. Diversity 2005, 9, 317–320, and references cited therein.
(10) (a) Tietze, L. F.; Saling, P. Synlett 1992, 281–282. (b) Borah,
H. N.; Deb, M. L.; Boruah, R. C.; Bhuyan, P. J. Tetrahedron Lett. 2005,
46, 3391–3393.
replacing the phenyl group by diverse aryl moieties (Y) on the
pyridazin-3-one/chalcone hybrids. It is also worth noting that
some of the pyridazin-3-ones reported here elicit potent platelet
aggregation inhibitory activity, with typical values around 3- to
10-fold higher than those of the starting hit compounds (Figure 1
and Table 4) and markedly higher than that for Sulfinpyrazone.
Further studies to complete the pharmacological characterization
of the library and to elucidate the structure-activity relationships
in these series are currently in progress in our laboratories, and
the results will be published elsewhere.
In summary, we have developed a practical and straight-
forward solution-phase synthesis protocol that enabled the accel-
eration of the hit to lead process within the framework of a
program aimed at the discovery of pyridazinone-based antiplate-
let agents. The data highlight the advantages of silica-supported
aluminum chloride as an efficient, versatile, and recyclable
catalyst for Knoevenagel and Claisen-Schmidt condensations.
A full account of the library production, the antiplatelet data, and
the main features of the structure-activity relationships in these
series will be published in due course.
(11) Tietze, L. F. Chem. Rev. 1996, 96, 115–136.
(12) Coelho, A.; Sotelo, E.; Fraiz, N.; Yꢀa~nez, M.; Laguna, R.; Cano,
E.; Ravi~na, E. J. Med. Chem. 2007, 50, 6476–6484.
(13) For previous works, see: (a) Sotelo, E.; Fraiz, N.; Yꢀa~nez, M.;
Laguna, R.; Cano, E.; Brea, J.; Ravi~na, E. Bioorg. Med. Chem. Lett. 2002, 10,
1575–1578. (b) Coelho, A.; Sotelo, E.; Fraiz, N.; Yꢀa~nez, M.; Laguna, R.;
Cano, E.; Ravi~na, E. Bioorg. Med. Chem. Lett. 2004, 14, 321–324. (c) Sotelo,
E.; Fraiz, N.; Yꢀan~ez, M.; Terrades, V.; Laguna, R.; Cano, E.; Ravi~na, E.
Bioorg. Med. Chem. 2002, 10, 2873–2882. (d) Crespo, A.; Meyers, C.;
Coelho, A.; Ya~nez, M.; Fraiz, N.; Sotelo, E.; Maes, B. U. W.; Laguna, R.;
Cano, E.; Lemiꢁere, G. L. F.; Ravi~na, E. Bioorg. Med. Chem. Lett. 2006, 16,
1080–1083. (e) Meyers, C.; Yꢀa~nez, M.; Elmatougi, A.; Verhest, T.; Coelho,
A.; Fraiz, N.; Lemiꢁere, G. L. F.; García-Mera, X.; Laguna, R.; Cano, E.; Maes,
B. U. W.; Sotelo, E. Bioorg. Med. Chem. Lett. 2008, 18, 793–797.
(14) (a) Corma, A.; García, H. Chem. Rev. 2003, 103, 4307–4366.
(b) Lin, J.; Gubaidulin, A.; Mamedov, V.; Tsuboi, S. Tetrahedron 2003,
59, 1781–1790.
reagents.html (accesed on Feb 15, 2010) and references there cited.
(16) (a) Price, P. M.; Clark, H. J.; Martin, K.; Mcquire, D. J.; Bastock,
J. W. Org. Process. Res. Dev. 1998, 2, 221–225. (b) Jun, S.; Ryoo, R.
J. Catal. 2000, 195, 237–243. (c) Hu, X. C.; Foo, M. L.; Chuak, G. K.;
Jaenicke, S. J. Catal. 2000, 195, 412–415.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures, spectroscopic data, and copies of NMR and mass spectra
for representative compounds are described. This material is
’ AUTHOR INFORMATION
(17) Morrissey, M. M.; Mohan, R.; Xu, W. Tetrahedron Lett. 1997,
Corresponding Author
*Phone: þþ34-981-563100. Fax: þþ34-981-528093. E-mail:
38, 7337–7340.
(18) Si-AlCl3 employed in this work was purchased from Sigma-
Aldrich. Kimble vials were closed before heating without any pressurization.
11
dx.doi.org/10.1021/co100017h |ACS Comb. Sci. 2011, 13, 7–12