[Ni(PR3)2LI2] as precatalysts (see ESI†). It is known, that this type
of reaction is catalyzed by Ni0 species.2
Ananikov, N. V. Orlov and I. P. Beletskaya, Organometallics, 2006, 25,
1970; (c) D. A. Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V.
P. Ananikov, I. P. Beletskaya and S. Nolan, Organometallics, 2006,
25, 4462; (d) V. P. Ananikov, N. V. Orlov and I. P. Beletskaya,
Organometallics, 2007, 26, 740; (e) V. P. Ananikov, N. V. Orlov, M.
A. Kabeshov, I. P. Beletskaya and Z. A. Starikova, Organometallics,
2008, 27, 4056; (f) V. P. Ananikov, K. A. Gayduk, Z. A. Starikova and
I. P. Beletskaya, Organometallics, 2010, 29, 5098; (g) V. P. Ananikov, K.
A. Gayduk, N. V. Orlov, I. P. Beletskaya, V. N. Khrustalev and M. Yu.
Antipin, Chem.–Eur. J., 2010, 16, 2063.
3 For examples: (a) F. D. Sokolov, V. V. Brusko, N. G. Zabirov and R.
A. Cherkasov, Curr. Org. Chem., 2006, 10, 27, andreferences therein;
(b) F. D. Sokolov, V. V. Brusko, D. A. Safin, R. A. Cherkasov and
N. G. Zabirov, Coordination Diversity of N-Phosphorylated Amides
and Ureas Towards VIIIB Group Cations, in, B. Varga and L. Kis, ed.
Transition Metal Chemistry: New Research, 2008, p. 101, and references
therein.
4 (a) F. D. Sokolov, N. G. Zabirov, L. N. Yamalieva, V. G. Shtyrlin, R.
R. Garipov, V. V. Brusko, A. Yu. Verat, S. V. Baranov, P. Mlynarz, T.
Glowiak and H. Kozlowski, Inorg. Chim. Acta, 2006, 359, 2087; (b) F.
D. Sokolov, S. V. Baranov, D. A. Safin, F. E. Hahn, M. Kubiak, T.
Pape, M. G. Babashkina, N. G. Zabirov, J. Galezowska, H. Kozlowski
and R. A. Cherkasov, New J. Chem., 2007, 31, 1661; (c) F. D. Sokolov,
S. V. Baranov, N. G. Zabirov, D. B. Krivolapov, I. A. Litvinov, B. I.
Khairutdinov and R. A. Cherkasov, Mendeleev Commun., 2007, 17,
222; (d) D. A. Safin, F. D. Sokolov, Ł. Szyrwiel, M. G. Babashkina, T.
R. Gimadiev, F. E. Hahn, H. Kozlowski, D. B. Krivolapov and I. A.
Litvinov, Polyhedron, 2008, 27, 2271; (e) D. A. Safin, M. G. Babashkina,
A. Klein, F. D. Sokolov, S. V. Baranov, T. Pape, F. E. Hahn and D. B.
Krivolapov, New J. Chem., 2009, 33, 2443.
5 (a) D. A. Safin, F. D. Sokolov, S. V. Baranov, Ł. Szyrwiel, M. G.
Babashkina, E. R. Shakirova, F. E. Hahn and Kozlowski, Z. Anorg.
Allg. Chem., 2008, 634, 835; (b) A. Yu. Verat, V. G. Shtyrlin, B. I.
Khairutdinov, F. D. Sokolov, L. N. Yamalieva, D. B. Krivolapov, N. G.
Zabirov, I. A. Litvinov and V. V. Klochkov, Mendeleev Commun., 2008,
18, 150.
6 (a) D. A. Safin, M. Bolte, M. G. Babashkina and H. Kozlowski,
Polyhedron, 2010, 29, 488; (b) D. A. Safin, M. G. Babashkina, M.
Bolte and Klein, Inorg. Chim. Acta, 2011, 365, 32.
7 M. G. Babashkina, D. A. Safin, M. Bolte and A. Klein, Polyhedron,
2010, 29, 1515.
8 (a) M. G. Babashkina, D. A. Safin, M. Bolte and A. Klein, Inorg. Chem.
Commun., 2009, 12, 678; (b) M. G. Babashkina, D. A. Safin, M. Bolte,
M. Srebro, M. Mitoraj, A. Uthe, Klein and M. Ko¨ckerling, Dalton
Trans., 2011, 40, 3142, DOI: 10.1039/c0dt01382j.
9 (a) D. A. Safin, F. D. Sokolov, H. No¨th, M. G. Babashkina, T. R.
Gimadiev, J. Galezowska and H. Kozlowski, Polyhedron, 2008, 27,
2022; (b) D. A. Safin, A. Klein, M. G. Babashkina, H. No¨th, D. B.
Krivolapov, I. A. Litvinov and H. Kozlowski, Polyhedron, 2009, 28,
1504; (c) D. A. Safin, M. G. Babashkina, M. Bolte, T. Pape, F. E. Hahn,
M. L. Verizhnikov, A. R. Bashirov and A. Klein, Dalton Trans., 2010,
39, 11577.
It was found that the products of the catalytic reaction 1–3
are formed in high yields (96–99%) and with efficient selectivity
from 96/4 to > 99/1 (Scheme 3). However, the addition of Ph2S2
to 1-hexyne has shown the worst selectivity among the studied
alkynes. This might be explained by the higher lability of 1-
hexyne. Furthermore, the isolated yields of 1–3 were 91–95%.
These results are compared with the data for the [NiII(acac)2]
and [Ni0(COD)2] complexes as precatalysts.2f Using the latter
compounds together with PMePh2 in the catalytic addition of
Ph2S2 to 3-hexyne also leads to the formation of 3 in high yield
(99%) and a selectivity of > 99/1. However, this reaction requires
3 h. Furthermore, handling of [Ni(COD)2] is rather complicated
and requires an inert atmosphere. In contrast to this situation, the
complexes [Ni(PR3)2LI2] (R = Me3, Me2Ph) are easily synthesized
and can be isolated with no precautions necessary. They can
be kept in air at least for several months without any signs
of decomposition, while the complex [Ni(PMe2Ph)2(acac)] was
◦
isolated at -17 C and is only stable at low temperature.2f Thus,
the NiII complex [NiLI2] in combination with phosphanes PR3
(R3 = Me3, Me2Ph) yields a highly efficient mixture for the
generation of Ni0 species in situ, which subsequently show a
high catalytic activity in the addition of Ph2S2 to 1-, 2- and 3-
hexynes.
We have synthesized the NiII complexes [Ni{iPrHNC(S)NP-
(S)(OiPr)2-1,3-N,S}2] [NiLI2] and [Ni{Et2NC(S)NP(S)(OiPr)2-
1,5-S,S¢}2] [NiLII2]. The former complex is the first example for a
NiII complex containing an asymmetric NTT ligand featuring an
alkyl-NH substituent at the thiocarbonyl group and coordinating
to the metal in the 1,3-N,S-fashion in the solid state. It was
established that the complex [NiLI2] forms stable mixed-ligand
octahedral complexes with phosphanes PR3 (R3 = Me3, Me2Ph).
These mixed-ligand complexes are efficient precatalysts for the
in situ generation of Ni0 species which were successfully used to
catalyze the addition of Ph2S2 to 1-, 2- and 3-hexynes.
Acknowledgements
D.A.S. and M.G.B. thank Prof. Dr Martin Ko¨ckerling for the
support.
10 (a) A. Davison and E. S. Switkes, Inorg. Chem., 1971, 10, 837; (b) E.
Simon-Manso, M. Valderrama and D. Boys, Inorg. Chem., 2001, 40,
3647.
11 V. V. Brusko, A. I. Rakhmatullin, V. G. Shtyrlin and N. G. Zabirov,
Russ. J. Gen. Chem., 2000, 70, 1521.
12 D. A. Safin, M. G. Babashkina, M. Bolte, D. B. Krivolapov, M. L.
Verizhnikov, A. R. Bashirov and A. Klein, Inorg. Chim. Acta, 2011,
366, 19.
13 (a) S. F. A. Kettle, Physical Inorganic Chemistry: a Coordination
Chemistry Approach, Spektrum Academica Publ., 1996, p. 175; (b) P.
Moore, W. Errington and S. P. Sangha, Helv. Chim. Acta, 2005, 88,
782.
14 (a) N. G. Zabirov, Doctor thesis, Kazan State University, Kazan, Russia,
1995, p. p. 483; (b) V. N. Solov’ev, F. M. Shamsevaleev, R. A. Cherkasov,
A. N. Chekhlov, A. G. Tsifarkin and I. V. Martynov, Russ. J. Gen. Chem.
(USSR), 1991, 61, 657; (c) D. A. Safin, M. G. Babashkina and A. Klein,
Catal. Lett., 2008, 129, 363.
Notes and references
1 For examples: (a) H. Kuniyasu, A. Ogawa, S. Miyazaki, I. Ryu, N.
Kambe and N. Sonoda, J. Am. Chem. Soc., 1991, 113, 9796; (b) T.
Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205; (c) E. Negishi,
Ed, Handbook of Organopalladium Chemistry for Organic Synthesis,
Wiley, New York, Chichester, 2002; (d) M. Beller, J. Seayad, A. Tillack
and H. Jiao, Angew. Chem., Int. Ed., 2004, 43, 3368; (e) F. Alonso, I. P.
Beletskaya and M. Yus, Chem. Rev., 2004, 104, 3079; (f) I. Beletskaya
and C. Moberg, Chem. Rev., 2006, 106, 2320; (g) I. P. Beletskaya and
V. P. Ananikov, Eur. J. Org. Chem., 2007, 3431; (h) V. P. Ananikov, K.
A. Gayduk, I. P. Beletskaya, V. N. Khrustalev and M. Yu. Antipin,
Chem.–Eur. J., 2008, 14, 2420.
2 (a) V. P. Ananikov, D. A. Malyshev, I. P. Beletskaya, G. G. Aleksandrov
and I. L. Eremenko, Adv. Synth. Catal., 2005, 347, 1993; (b) V. P.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 4806–4809 | 4809
©