a steric bias have been reported.3,6 With this background in
mind, we examined the selective protection of diol 52a (Table
1). Examination of reaction conditions previously applied
of TES-Cl, imidazole (1.15 equiv), and DMAP (0.05 equiv)
in 1:1 CH2Cl2-DMF at -78 °C (entry 3).8
The optimal silylation conditions defined for 5 provided
high levels of selectivity for allylic alcohol silylation with
other unsaturated (Z)-1,5-syn-diols (Table 2).9 Pseudo-
Table 1. Optimization of Selective Silylation Conditions
Table 2. Selective Protection of (Z)-1,5-syn-Diols
allylic/
bis-TES recovered
1,5-diol
entry
1
conditionsa
yield homoallylic ether
TBS-Cl (1.05 equiv), 39% 86:14
imidazole, DMAP,
CH2Cl2-DMF
NA
58%
rt, 2 days
2
3
TES-Cl (1.05 equiv), 65
imidazole, DMAP,
CH2Cl2-DMF
>95:5
7%
8%
0 °C, 2 h
TES-Cl (1.1 equiv),
imidazole, DMAP,
CH2Cl2-DMF
81
>97:3
14%
NA
-78 °C, 2 h
a With 1.15 equiv of imidazole, 0.05 equiv of DMAP.
to sterically unbiased substrates (TBS-Cl, imidazole, DMAP,
rt)3 provided a 39% yield of the mono-TBS ether consisting
of an 86:14 mixture of allylic silyl ether 6 and the
corresponding homoallylic silyl ether (entry 1). After explor-
ing other conditions,7 we found the yield and chemoselec-
tivity of silylation could be improved through the use of the
more reactive silylating reagent, TES-Cl, which allowed these
reactions to proceed at lower reaction temperatures. Optimal
reaction conditions involved treatment of 5 with 1.1 equiv
a Reactions were performed by treating a solution of the 1,5-diol (1
equiv), imidazole (1.15 equiv), and DMAP (0.05 equiv) in CH2Cl2-DMF
(1:1, 0.1 M) at -78 °C with TES-Cl (1.1 equiv). b Combined yield of mono-
TES ethers (allylic and homoallylic). c Bis-TES ethers were obtained as
follows: entry 1, 17%; entry 2, 6%; entry 3, not isolated; entry 4, 12%;
entry 5, 9% yield.
(4) (a) Chen, S.-H.; Wei, J.-M.; Vyas, D. M.; Doyle, T. W.; Farina, V.
Tetrahedron Lett. 1993, 34, 6845. (b) Wyatt, P. G.; Coomber, B. A.; Evans,
D. N.; Jack, T. I.; Fulton, H. E.; Wonacott, A. J.; Colman, P.; Varghese, J.
Bioorg. Med. Chem. Lett. 2001, 11, 669. (c) Kaneko, M.; Nakashima, T.;
Uosaki, Y.; Hara, M.; Ikeda, S.; Kanda, Y. Bioorg. Med. Chem. Lett. 2001,
11, 887. (d) Horiguchi, T.; Oritani, T.; Kiyota, H. Tetrahedron 2003, 59,
1529. (e) Nicolaou, K. C.; Koftis, T. V.; Vyskocil, S.; Petrovic, G.; Ling,
T.; Yamada, Y. M. A.; Tang, W.; Frederick, M. O. Angew. Chem., Int. Ed.
2004, 43, 4318. (f) Jaunzems, J.; Kashin, D.; Schonberger, A.; Kirschning,
A. Eur. J. Org. Chem. 2004, 3435. (g) Cho, J. H.; Dernard, D. L.; Sidwell,
R. W.; Kern, E. R.; Chu, C. K. J. Med. Chem. 2006, 49, 1140.
(5) (a) Ramsay, M. V. J.; Roberts, S. M.; Russell, J. C.; Shingler, A. H.;
Slawin, A. M. Z.; Sutherland, D. R.; Tiley, E. P.; Williams, D. J.
Tetrahedron Lett. 1987, 28, 5353. (b) Bliard, C.; Escribano, F. C.; Lukacs,
G.; Olesker, A.; Sarda, P. J. Chem. Soc., Chem. Commun. 1987, 368. (c)
Banks, B. J.; Bishop, B. F.; Evans, N. A.; Gibson, S. P.; Goudie, A. C.;
Gration, K. A. F.; Pacey, M. S.; Perry, D. A.; Witty, M. J. Bioorg. Med.
Chem. 2000, 8, 2017. (d) Konoki, K.; Sugiyama, N.; Murata, M.; Tachibana,
K.; Hatanaka, Y. Tetrahedron 2000, 56, 9003. (e) Crimmins, M. T.; Katz,
J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem. Soc.
2002, 124, 5661. (f) Nagai, K.; Sunazuka, T.; Omura, S. Tetrahedron Lett.
2004, 45, 2507.
symmetrical 1,5-diols 81 and 106 which contain the same R1
and R2 substituents were silylated with excellent levels of
chemoselectivity, providing nearly exclusive formation of
the allylic silyl ether (entries 1 and 2). With substrates 10
and 12 (entries 2 and 3) that have increased steric bulk around
the 1,5-diol core, improved yields of the allylic monosilyl
ethers 11 and 13 were obtained since formation of the bis-
silyl ether product was suppressed (e6% yield). The selective
protection of dienylic alcohol 14, an intermediate in the
(6) (a) Karanewsky, D. S. Tetrahedron Lett. 1991, 32, 3911. (b) Marco-
Contelles, J.; de Opazo, E. J. Org. Chem. 2000, 65, 5416. (c) Smith, A. B.,
III; Adams, C. M.; Barbosa, S. A.; Degnan, A. P. J. Am. Chem. Soc. 2003,
125, 350. (d) Terauchi, T.; Tanaka, T.; Terauchi, T.; Morita, M.; Kimijima,
K.; Sato, I.; Shoji, W.; Nakamura, Y.; Tsukada, T.; Tsunoda, T.; Hayashi,
G.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2003, 44, 7747.
(8) The use of imidazole improved the selectivity for allylic alcohol
silylation compared to other bases, while DMF and DMAP have little effect
on chemoselectivity. See Supporting Information for details.
(9) The identity of the major products as the allylic TES ethers was
confirmed by acylation (Ac2O, DMAP) of the homoallylic hydroxyl groups
to give the homoallylic acetate that was characterized by 1H NMR
spectroscopy.
(7) A table of other conditions examined during efforts to optimize the
selectivity of silylation of diol 8 is provided in the Supporting Information.
5622
Org. Lett., Vol. 9, No. 26, 2007