A R T I C L E S
Notestein et al.
catalysts in Figure 5. Thus, we conclude that the low turnover
rates measured on 1-TiO2 and 1-Al2O3 do not reflect inner-
sphere effects on Ti centers caused by these supports acting as
monodentate ligands, but instead arise from outer-sphere effects
that do not cause detectable changes in the electronic state of
Ti centers.
and by fluorous alcohols.63 Higher rates of peroxide heterolytic
cleavage on Fe heme-type catalysts correlate with decreasing
pKa of alcohol co-solvents.64,65 Outer-sphere effects caused by
protons also lead to an increase in epoxidation rates when using
peroxyacid oxidants,8 heme enzymes, such as the cytochrome
P450 family,66 and bioinspired non-heme iron catalysts.67 The
“pull” effect of vicinal acid centers in heme enzymes has also
been demonstrated in “hangman” metalloporphyrins.68 Similar
effects have been implicated in the accelerating effects of
increasingly acidic alcohols in the epoxidation of alkenes with
aqueous H2O2 on TS-1.26,69 On TS-1, reactant solubility also
correlates with the pKa of alcohol cosolvents,28 but these effects
are too weak to account for the strong effects of alcohols on
epoxidation rates.26
In view of these precedents, the higher epoxidation rates on
1-SiO2, relative to Ti sites with similar inner-sphere coordination
environments in solution or grafted on TiO2 or Al2O3, are
attributed to cooperative interactions between Ti Lewis acid sites
and weakly acidic protons provided by the SiO2 support. SiO2
surfaces, with a high density of weakly acidic protons, provide
adsorbed species with an environment resembling that in high-
dielectric solvents with a pKa of ∼7.70 Cooperative H-bonding
intermediates between organic and inorganic active sites and
surface silanols are easily formed.71 In contrast, the outer-sphere
environment in homogeneous 1c is imposed by octane, a low
dielectric aprotic solvent, as demonstrated by the higher energy
of the LMCT band (discussed above). Exposure of 1c to TBHP
at concentrations used in our catalytic experiments led to the
quantitative formation of free triphenylsilanol ligands (by
solution 1H NMR), indicating that large values of K2 are favored
by the weak acidity of the triphenylsilanol ligand (∼2 pKa units
higher than for isolated silanols on SiO255). However, the
resulting silanol concentration is many orders of magnitude
lower than the concentrations for which alcohols were found
previously to alter the rate of heterolytic cleavage of metal-
alkylhydroperoxides.64 The overall epoxidation rate for homo-
geneous 1c is therefore determined by a low value of k3. We
have previously observed a correlation between decreasing
cyclohexene epoxidation rates for 1-SiO2 and increasing tem-
perature of catalyst pretreatment,38 which would decrease silanol
densities and the ability to form intermediate A.
Except in the patent literature,10 there have been few
systematic studies of isolated Ti sites supported on oxides other
than SiO2,57 such as Al2O3 or TiO2, which would provide
58
evidence for outer-sphere effects caused by support surfaces.
Sol-gel mixed oxides containing TiO259 are not well-suited to
explore support effects because of their complex and poorly
defined Ti environments. Strong Brønsted acids34,60 open
epoxide rings rapidly in the presence of traces of water and
lead to low epoxide yields and to deactivation via chelation of
Lewis acid active sites by the alkane diols.61 Cluster density
functional theory studies of titanosilicate structures suggest that
Ti Lewis centers with vicinal weakly acidic protons form
hydrogen-bonded structures such as intermediate A (Scheme
3), which decrease the activation barrier for the kinetically
relevant step 3 in the catalytic cycle (Scheme 3).11-15 This
decrease in activation barriers is accompanied by a concomitant
increase in [Ti]O-OR bond lengths and by a decrease in the
energy level of the σ* orbital involved in the O-O bond.13,15
These outer-sphere effects caused by protons have been
difficult to detect unambiguously in solid oxidation catalysts,
but have been more clearly established in homogeneous systems.
H-bonding has been implicated in hydroperoxide activation by
homogeneous Ti(OSiMe3)4 catalysts in high alkyl hydroperoxide
concentrations,17 by protonated analogues of Ti-salen salts,62
(57) Gianotti, E.; Bisio, C.; Marchese, L.; Guidotti, M.; Ravasio, N.; Psaro, R.;
Coluccia, S. J. Phys. Chem. C 2007, 111, 5083-5089. Guidotti, M.;
Ravasio, N.; Psaro, R.; Ferraris, G.; Moretti, G. J. Catal. 2003, 214, 242-
250. Fraile, J. M.; Garc´ıa, J. I.; Mayoral, J. A.; Vispe, E.; Brown, D. R.;
Naderi, M. Chem. Commun. 2001, 1510-1511. Fraile, J. M.; Garc´ıa, J. I.;
Mayoral, J. A.; Vispe, E. Appl. Catal. A: 2004, 276, 113-122.
(58) van Vliet, M. C. A.; Mandelli, D.; Arends, I.; Schuchardt, U.; Sheldon, R.
A. Green Chem. 2001, 3, 243-246. Rinaldi, R.; Schuchardt, U. J. Catal.
2004, 227, 109-116.
(59) Beck, C.; Mallat, T.; Burgi, T.; Baiker, A. J. Catal. 2001, 204, 428-439.
Hutter, R.; Mallat, T.; Baiker, A. J. Catal. 1995, 153, 177-189. de Farias,
R. F.; Arnold, U.; Martinez, L.; Schuchardt, U.; Jannini, M. J. D. M.;
Airoldi, C. J. Phys. Chem. Solids 2003, 64, 2385-2389.
(60) Iengo, P.; Aprile, G.; Di Serio, M.; Gazzoli, D.; Santacesaria, E. Appl.
Catal. A 1999, 178, 97-109. Gianotti, E.; Oliveira, E. C.; Coluccia, S.;
Pastore, H. O.; Marchese, L. Inorg. Chim. Acta 2003, 349, 259-264.
(61) Davies, L.; McMorn, P.; Bethell, D.; Page, P. C. B.; King, F.; Hancock, F.
E.; Hutchings, G. J. Chem. Commun. 2000, 1807-1808. Corma, A.;
Domine, M.; Gaona, J. A.; Jorda´, J. L.; Navarro, M. T.; Rey, F.; Pe´rez-
Pariente, J.; Tsuji, J.; McCulloch, B.; Nemeth, L. T. Chem. Commun. 1998,
2211-2212.
(62) Sawada, Y.; Matsumoto, K.; Kondo, S.; Watanabe, H.; Ozawa, T.; Suzuki,
K.; Saito, B.; Katsuki, T. Angew. Chem., Int. Ed. 2006, 45, 3478-3480.
(63) van Vliet, M. C. A.; Arends, I.; Sheldon, R. A. Synlett 2001, 1305-1307.
van Vliet, M. C. A.; Arends, I.; Sheldon, R. A. Synlett 2001, 248-250.
Berkessel, A.; Adrio, J. A.; Huttenhain, D.; Neudorfl, J. M. J. Am. Chem.
Soc. 2006, 128, 8421-8426. Berkessel, A.; Adrio, J. A. J. Am. Chem. Soc.
2006, 128, 13412-13420.
(64) Traylor, T. G.; Xu, F. J. Am. Chem. Soc. 1990, 112, 178-186.
(65) Stephenson, N. A.; Bell, A. T. Inorg. Chem. 2006, 45, 2758-2766. Lee,
W. A.; Yuan, L. C.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 4277-
4283.
(66) Sono, M.; Roach, M. P.; Coulter, E. O.; Dawson, J. H. Chem. ReV. 1996,
96, 2841-2887. Ozaki, S. I.; Roach, M. P.; Matsui, T.; Watanabe, Y. Acc.
Chem. Res. 2001, 34, 818-825.
(67) Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L. J. Am. Chem. Soc.
2002, 124, 3026-3035. Taktak, S.; Ye, W.; Herrera, A. M.; Rybak-
Akimova, E. V. Inorg. Chem. 2007, 46, 2929-2942.
Fully hydroxylated anatase TiO2 and Al2O3 (e.g., boehmite
or steam-treated γ-alumina) surfaces exhibit higher densities
of OH groups than SiO2,72 and, unlike SiO2, protonate ammonia
and piperidine, indicating higher acid strength than SiO2.73 On
Ti centers grafted on Al2O3 and TiO2 surfaces, we conclude
that intermediate A (Scheme 3) is very reactive (large k3) but
present at low concentrations (low K2) because its formation
requires the transfer of a proton from the hydroperoxide to
(70) Rouxhet, P. G.; Sempels, R. E. J. Chem. Soc., Faraday Trans. 1 1974, 70,
2021-2032. Anderson, J. H.; Lombardi, J.; Hair, M. L. J. Colloid Interface
Sci. 1975, 50, 519-524. Hair, M. L.; Hertl, W. J. Phys. Chem. 1970, 74,
91-94.
(71) Bass, J. D.; Anderson, S. L.; Katz, A. Angew. Chem., Int. Ed. 2003, 42,
5219-5222; Bass, J. D.; Solovyov, A.; Pascall, A. J.; Katz, A. J. Am. Chem.
Soc. 2006, 128, 3737-3747.
(72) Knozinger, H. In The Hydrogen Bond: Recent DeVelopments in Theory
and Experiments; Schuster, P., Zundel, G., Sandorfy, C., Eds.; American
Elsevier Pub. Co.: New York, 1976; pp 1267-1353.
(68) Chang, C.-H.; Chng, L. L.; Nocera, D. G. J. Am. Chem. Soc. 2003, 125,
1966-1976. Dempsey, J. L.; Esswein, A. J.; Manke, D. R.; Rosenthal, J.;
Soper, J. D.; Nocera, D. G. Inorg. Chem. 2005, 44, 6879-6892.
(69) Sato, T.; Dakka, J.; Sheldon, R. A. In Zeolites and Related Microporous
Materials: State of the Art 1994, Proceedings of the 10th International
Zeolite Conference, Garmisch-Partenkirchen, Germany, July 17-22, 1994;
Weitkamp, J., Ed.; Elsevier: Amsterdam, Netherlands, 1994; Vol. 84, p
1853-1860.
(73) Moss, J. H.; Parfitt, G. D.; Wright, A. Colloid Polym. Sci. 1978, 256, 1121-
1130. Busca, G. Catal. Today 1998, 41, 191-206. Majors, P. D.; Raidy,
T. E.; Ellis, P. D. J. Am. Chem. Soc. 1986, 108, 8123-8129. Tsyganenko,
A. A.; Pozdnyakov, D. V.; Filimonov, V. N. J. Mol. Struct. 1975, 29, 299-
318. Tsyganenko, A. A.; Storozheva, E. N.; Manoilova, O. V.; Lesage, T.;
Daturi, M.; Lavalley, J. C. Catal. Lett. 2000, 70, 159-163.
9
15592 J. AM. CHEM. SOC. VOL. 129, NO. 50, 2007