Notes and references
§ We thank the Deutsche Forschungsgemeinschaft (STU 280/1–4) for
supporting our work. BACHEM AG is acknowledged for donation of
various amino acids.
1 K. Matyjaszewski and J. Xia, Chem. Rev., 2001, 101, 2921;
M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rev., 2001, 101,
3689.
2 E. Rizzardo, J. Chiefari, R. T. A. Mayadunne, G. Moad and
S. H. Thang, in Controlled/Living Radical Polymerization: ACS Symp.
Ser. 768, ed. K. Matyjaszewski, American Chemical Society,
Washington, DC, 2000, p. 278; A. Favier and M.-T. Charreyre,
Macromol. Rapid Commun., 2006, 27, 653.
3 C. J. Hawker, A. W. Bosman and E. Harth, Chem. Rev., 2001, 101,
3661.
4 T. P. Russell, Science, 2002, 297, 964.
5 M. Heskins and J. E. Guillet, J. Macromol. Sci., Chem., 1968, 2, 1441.
Review: H. G. Schild, Prog. Polym. Sci., 1992, 17, 163.
6 E. S. Gil and S. M. Hudson, Prog. Polym. Sci., 2004, 29, 1173; C. de la
Heras, S. Pennadam and C. Alexander, Chem. Soc. Rev., 2005, 34, 276.
7 P. S. Stayton, T. Shimoboji, C. Long, A. Chilkoti, G. H. Chen,
J. M. Harris and A. S. Hoffman, Nature, 1995, 378, 472; V. Bulmus,
Z. L. Ding, C. J. Long, P. S. Stayton and A. S. Hoffman, Bioconjugate
Chem., 2000, 11, 78; Z. L. Ding, R. B. Fong, C. J. Long, P. S. Stayton
and A. S. Hoffman, Nature, 2001, 411, 59; K. L. Heredia, D. Bontempo,
T. Ly, J. T. Byers, S. Halstenberg and H. D. Maynard, J. Am. Chem.
Soc., 2005, 127, 16955; D. Bontempo and H. D. Maynard, J. Am.
Chem. Soc., 2005, 127, 6508; D. Bontempo, R. C. Li, T. Ly,
C. E. Brubaker and H. D. Maynard, Chem. Commun., 2005, 4702.
8 T. Schulte, K. O. Siegenthaler, H. Luftmann, M. Letzel and A. Studer,
Macromolecules, 2005, 38, 6833.
Fig. 4 Alkoxyamines 12 and 14 used in the enzymatic hydrolysis to yield
13 and 15.
For enzymatic studies, we prepared the PNIPAM peptide
conjugates 12 (Mw 5 12 700 g mol21, PDI 5 1.38) and 14
(Mw 5 10 900 g mol21, PDI 5 1.38, Fig. 4). The C-terminus of
these peptides was protected as p-nitroanilide, which was known to
undergo chymotrypsin-catalyzed hydrolysis to liberate the UV
active p-nitroaniline and the conjugates 13 and 15.
9 R. E. W. Hancock and D. S. Chapple, Antimicrob. Agents Chemother.,
1999, 43, 1317.
10 U. Hersel, C. Dahmen and H. Kessler, Biomaterials, 2003, 24, 4385;
D.-H. Min and M. Mrksich, Curr. Opin. Chem. Biol., 2004, 8, 554.
11 H. G. Bo¨rner, Macromol. Chem. Phys., 2007, 208, 124; J. Nicolas,
G. Mantovani and D. M. Haddleton, Macromol. Rapid Commun.,
2007, 28, 1083. See also: M. L. Becker, J. Liu and K. L. Wooley,
Biomacromolecules, 2005, 6, 220; B. S. Lele, H. Murata,
K. Matyjaszewski and A. J. Russell, Biomacromolecules, 2005, 6,
3380; J. Couet, J. D. Jeyaprakash, S. Samuel, A. Kopyshev, S. Santer
and M. Biesalski, Angew. Chem., 2005, 117, 3361, (Angew. Chem., Int.
Ed., 2005, 44, 3297); I. C. Reynhout, D. W. P. M. Lo¨wik, J. C. M. van
Hest, J. J. L. M. Cornelissen and R. J. M. Nolte, Chem. Commun., 2005,
602; A. J. T. Dirks, S. S. van Berkel, N. S. Hatzakis, J. A. Opsteen,
F. L. van Delft, J. J. L. M. Cornelissen, A. E. Rowan, J. C. M. van
Hest, F. P. J. T. Rutjes and R. J. M. Nolte, Chem. Commun., 2005,
4172; J. Couet and M. Biesalski, Macromolecules, 2006, 39, 7258;
S. Venkataraman and K. L. Wooley, Macromolecules, 2006, 39, 9661;
J. Nicolas, V. S. Miguel, G. Mantovani and D. M. Haddleton, Chem.
Commun., 2006, 4697; J. Nicolas, E. Khoshdel and D. M. Haddleton,
Chem. Commun., 2007, 1722; B. Le Droumaguet, G. Mantovani,
D. M. Haddleton and K. Velonia, J. Mater. Chem., 2007, 17, 1916.
12 C. Wetter, J. Gierlich, C. A. Knoop, C. Mu¨ller, T. Schulte and
A. Studer, Chem.–Eur. J., 2004, 10, 1156; A. J. Herrera and A. Studer,
Synthesis, 2005, 1389; K. Molawi, T. Schulte, K. O. Siegenthaler,
C. Wetter and A. Studer, Chem.–Eur. J., 2005, 11, 2335.
The temperature-induced phase transitions (LCST) of the
PNIPAM peptide conjugates 11, 12 and 14 were studied using
1H NMR spectroscopy (see ESI{).15 Conjugate 11 showed a
phase switch at around 31 uC. For 12 and 14, the LCST was
found at 29 uC. It has been known that low molecular weight
PNIPAM conjugates bearing a hydrophobic moiety at the
polymer chain end have LCSTs below 32 uC, in agreement with
our results.16
The enzymatic reactions using 12 and 14 were conducted with
commercially available chymotrypsin and were followed with UV
spectroscopy (see ESI{). At 37 uC, the enzymatic hydrolysis was
completely suppressed for both substrates. At 22 uC, however, 12
and 14 are soluble in H2O and the enzymatic reaction occurred. It
is important to note that hydrolysis could be stopped by increasing
the temperature to 37 uC. Renewed cooling to 22 uC reinstalled the
active state of the system and the reaction went to completion (see
Fig. S8 in the ESI{).
13 K. Matyjaszewski, B. E. Woodworth, X. Zhang, S. G. Gaynor and
Z. Metzner, Macromolecules, 1998, 31, 5955.
14 S. Kehr and H. Luftmann, e-Polymers, 2007, no. 010.
15 A. Larsson, D. Kuckling and M. Scho¨nhoff, Colloids Surf., A, 2001,
190, 185.
In conclusion, we showed that serines bearing an alkoxyamine
moiety able to initiate/regulate
a controlled living radical
polymerization could readily be synthesized and immobilized at
any position of a peptide. NMP of various monomers delivered
the corresponding polymer peptide conjugates. The activity of
PNIPAM peptide conjugates towards enzymatic hydrolysis was
readily switched by temperature control.§
16 For the LCST of PNIPAMs bearing different end groups, see:
P. Kujawa, F. Tanaka and F. M. Winnik, Macromolecules, 2006, 39,
3048; Q. Duan, Y. Miura, A. Narumi, X. Shen, S.-I. Sato, T. Satoh and
T. Kakuchi, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1117;
S. Furyk, Y. Zhang, D. Ortiz-Acosta, P. S. Cremer and D. E. Bergbreiter,
J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1492.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 5173–5175 | 5175