ORGANIC
LETTERS
2008
Vol. 10, No. 1
137-140
Anti Aldol Selectivity in a Synthetic
Approach to the C1−C12 Fragment of the
Tedanolides
Michael E. Jung* and Ting-hu Zhang
Department of Chemistry and Biochemistry, UniVersity of California,
Los Angeles, California 90095-1569
Received November 10, 2007
ABSTRACT
In a synthetic approach to the completely protected C1−C12 fragment of the macrocyclic cytotoxic agent tedanolide 1, we carried out the
tin-catalyzed Mukaiyama aldol reaction between the 2,3-dialkoxypropanal 5 and the silyl enol ether 6 derived from the ketone 7, which gave,
unexpectedly, the anti aldol isomer, rather than the expected syn isomer 4, as the major diastereomer formed.
In 1984, Schmitz and co-workers1 isolated tedanolide 1 from
the Caribbean sponge Tedania ignis and reported that it
Scheme 1
showed very high cytotoxicity, with ED50 values of 250
pg/mL against human nasopharynx carcinoma and 16
pg/mL against in vitro lymphocytic leukemia. Seven years
later, Fusetani isolated 13-deoxytedanolide, which also dis-
played very potent cytotoxic effects.2 Owing to its structural
complexity and biological activity, tedanolide has generated
considerable synthetic interest,3 including two total syntheses
and significant synthetic work. Over the past few years, we
have employed the non-aldol aldol process4 in several
approaches to tedanolide and its analogues. By using a
straightforward retrosynthetic disconnection of the tedanolide
skeleton involving cleavage at the lactone moiety and scission
at the C12-C13 bond, we were able to generate the precursors
(1) Schmitz, F. J.; Gunasekera, S. P.; Yalamanchili, G.; Hossain, M. B.;
van der Helm, D. J. Am. Chem. Soc. 1984, 106, 7251.
(2) Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. J. Org. Chem.
1991, 56, 4971.
(3) (a) Total synthesis of tedanolide: Ehrlich, G.; Hassfeld, J.; Eggert,
U.; Kalesse, M. J. Am. Chem. Soc. 2006, 128, 14038. (b) Synthetic study
of tedanolide: Iwata, Y.; Tanino, K.; Miyashita, M. Org. Lett. 2005, 7,
2341. Ehrlich, G.; Kalesse, M. Synlett 2005, 655. Hassfeld, J.; Kalesse, M.
2 and 3 (Scheme 1). Recently, we reported two approaches
to the C1-C12 fragment of tedanolide 2, both of which used
the non-aldol aldol process and either a highly stereoselective
Synlett 2002, 2007. Roush, W. R.; Newcom, J. S. Org. Lett. 2002, 4, 4739.
Taylor, R. E.; Hearn, B. R.; Ciavarri, J. P. Org. Lett. 2002, 4, 2953. Loh,
T.-P.; Feng, L.-C. Tetrahedron Lett. 2001, 42, 6001. Loh, T.-P.; Feng,
L.-C. Tetrahedron Lett. 2001, 42, 3223. Smith, A. B.; Lodise, S. A. Org.
Lett. 1999, 1, 1249. Roush, W. R.; Lane, G. C. Org. Lett. 1999, 1, 95.
(4) (a) Jung, M. E.; Lee, C. P. Org. Lett. 2001, 3, 333. (b) Jung, M. E.;
Lee, C. P. Tetrahedron Lett. 2000, 41, 9719. (c) Jung, M. E.; Marquez, R.
Org. Lett. 2000, 2, 1669. (d) Jung, M. E.; Marquez, R. Tetrahedron Lett.
1999, 40, 3129. (e) Jung, M. E.; Karama, U.; Marquez, R. J. Org. Chem.
1999, 64, 663.
10.1021/ol702729u CCC: $40.75
© 2008 American Chemical Society
Published on Web 12/08/2007