Transthyretin Amyloidogenesis Inhibitors
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 2 269
(4) Johnson, S. M.; Wiseman, R. L.; Sekijima, Y.; Green, N. S.; Adamski-
Werner, S. L.; Kelly, J. W. Native state kinetic stabilization as a
strategy to ameliorate protein misfolding diseases: A focus on the
transthyretin amyloidoses. Acc. Chem. Res. 2005, 38, 911–921.
(5) Jacobson, D. R.; Pastore, R. D.; Yaghoubian, R.; Kane, I.; Gallo, G.;
Buck, F. S.; Buxbaum, J. N. Variant-sequence transthyretin (isoleucine
122) in late-onset cardiac amyloidosis in black Americans. N. Engl.
J. Med. 1997, 336, 466–473.
(6) Plante-Bordeneuve, V.; Said, G. Transthyretin related familial amyloid
polyneuropathy. Curr. Opin. Neurol. 2000, 13, 569–573.
(7) Holmgren, G.; Ericzon, B. G.; Groth, C. G.; Steen, L.; Suhr, O.;
Andersen, O.; Wallin, B. G.; Seymour, A.; Richardson, S.; Hawkins,
P. N. Clinical improvement and amyloid regression after liver
transplantation in hereditary transthyretin amyloidosis. Lancet 1993,
341, 1113–1116.
X-ray Crystallographic Analysis of WT-TTR in apo-Form
and Bound to Inhibitors 2f, 4d, and 4f. WT-TTR was purified
from an E. coli expression system, as described previously.58 The
WT-TTR was concentrated to 4 mg/mL in 10 mM NaPi, 100 mM
KCl, at pH 7.6 and cocrystallized at room temperature with
inhibitors 2d, 4d, and 4f at a 5 M excess using the vapor-diffusion
sitting drop method. Crystals were grown from 1.395 M sodium
citrate, 3.5% v/v glycerol at pH 5.5. The crystals were cryo-
protected with an inhibitor-free solution of 10% v/v glycerol. Data
were collected at beam line 11-1 at the Stanford Synchrotron
Radiation Laboratory (SSRL) at a wavelength of 0.9795 Å for the
apo, 2f, and 4f crystals and at 0.9195 Å, corresponding to the
bromine peak wavelength, for the 4d crystals. The data sets were
integrated and scaled using HKL2000.59 The crystals were indexed
in space group P21212 with two subunits per asymmetric unit with
unit cell dimensions a ) 84.9 Å, b ) 43.9 Å, and c ) 64.8 Å. The
four crystal structures were determined by molecular replacement
using the model coordinates of 2FBR60 in the program Phaser61 to
1.4, 1.45, 1.5, and 1.3 Å resolutions for the apo, 2f, 4d, and 4f
structures, respectively. Further model building and refinement were
completed using Refmac.62 Hydrogens were added during refine-
ment and anisotropic B-values were calculated. Final models were
validated using the JCSG quality control server incorporating
Molprobity,63 ADIT (http://rcsb-deposit.rutgers.edu/validate) WHA-
TIF,64 Resolve,65 and Procheck.66 Data collection and refinement
statistics are presented in Table 1.
(8) Tan, S. Y.; Pepys, M. B.; Hawkins, P. N. Treatment of amyloidosis.
Am. J. Kidney Dis. 1995, 26, 267–285.
(9) Suhr, O. B.; Herlenius, G.; Friman, S.; Ericzon, B. G. Liver
transplantation for hereditary transthyretin amyloidosis. LiVer Trans-
plant. 2000, 6, 263–276.
(10) Olofsson, B. O.; Backman, C.; Karp, K.; Suhr, O. B. Progression of
cardiomyopathy after liver transplantation in patients with familial
amyloidotic polyneuropathy, Portuguese type. Transplantation 2002,
73, 745–751.
(11) Blake, C. C.; Geisow, M. J.; Oatley, S. J.; Rerat, B.; Rerat, C. Structure
of prealbumin: Secondary, tertiary and quaternary interactions deter-
mined by Fourier refinement at 1.8 A. J. Mol. Biol. 1978, 121, 339–
356.
(12) Hornberg, A.; Eneqvist, T.; Olofsson, A.; Lundgren, E.; Sauer-
Eriksson, A. E. A comparative analysis of 23 structures of the
amyloidogenic protein transthyretin. J. Mol. Biol. 2000, 302, 649–
669.
(13) Foss, T. R.; Kelker, M. S.; Wiseman, R. L.; Wilson, I. A.; Kelly,
J. W. Kinetic stabilization of the native state by protein engineering:
Implications for inhibition of transthyretin amyloidogenesis. J. Mol.
Biol. 2005, 347, 841–854.
(14) Monaco, H. L.; Rizzi, M.; Coda, A. Structure of a complex of two
plasma proteins: Transthyretin and retinol-binding protein. Science
1995, 268, 1039–1041.
(15) Foss, T. R.; Wiseman, R. L.; Kelly, J. W. The pathway by which the
tetrameric protein transthyretin dissociates. Biochemistry 2005, 44,
15525–15533.
(16) Neumann, P.; Cody, V.; Wojtczak, A. Structural basis of negative
cooperativity in transthyretin. Acta Biochim. Pol. 2001, 48, 867–875.
(17) Stockigt, J. R. Thyroid Hormone Binding and Metabolism. In
Endocrinology, 4th edition; Degroot, L. J., Jameson, J. L., Eds.; W. B.
Saunders Co.: Philadelphia, PA, 2001; pp 1314-1326.
(18) Klabunde, T.; Petrassi, H. M.; Oza, V. B.; Raman, P.; Kelly, J. W.;
Sacchettini, J. C. Rational design of potent human transthyretin
amyloid disease inhibitors. Nat. Struct. Biol. 2000, 7, 312–321.
(19) Hammarstrom, P.; Wiseman, R. L.; Powers, E. T.; Kelly, J. W.
Prevention of transthyretin amyloid disease by changing protein
misfolding energetics. Science 2003, 299, 713–716.
Protein Data Bank Accession Codes. Atomic coordinates have
are available under accession codes 2QGB (apo-form WT-TTR),
2QGE (WT-TTR in complex with 2f), 2QGD (WT-TTR in complex
with 4d), and 2QGC (WT-TTR in complex with 4f).
Acknowledgment. We are grateful for the financial support
of the NIH DK 46335 (J.W.K), CA58896, and AI42266
(I.A.W.), as well as the Skaggs Institute of Chemical Biology
and the Lita Annenberg Hazen Foundation. Assistance with the
thyroid hormone receptor and COX-I binding assays by the
Cerep laboratories (Redmond, WA, and France) and Richard
Labaudiniere of FoldRx Pharmaceuticals (Boston, MA), as well
as the technical expertise of Ted Foss, M. T. Dendle, and Mike
Saure are also greatly appreciated. Portions of this research were
carried out at the Stanford Synchrotron Radiation Laboratory,
a national user facility operated by Stanford University on behalf
of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is
supported by the Department of Energy, Office of Biological
and Environmental Research and by the National Institutes of
Health, National Center for Research Resources, Biomedical
Technology Program, and the National Institute of General
Medical Sciences. The authors would also like to thank Drs.
Robyn Stanfield, Xiaoping Dai, and Petra Verdino in the Wilson
laboratory for assistance in data collection and structure
determination.
(20) Wiseman, R. L.; Johnson, S. M.; Kelker, M. S.; Foss, T.; Wilson,
I. A.; Kelly, J. W. Kinetic stabilization of an oligomeric protein by a
single ligand binding event. J. Am. Chem. Soc. 2005, 127, 5540–5551.
(21) Coelho, T.; Carvalho, M.; Saraiva, M. J.; Alves, I.; Almeida, M. R.;
Costa, P. P. A strikingly benign evolution of FAP in an individual
found to be a compound heterozygote for two TTR mutations: TTR
Met 30 and TTR Met 119. J. Rheumatol. 1993, 20, 179.
(22) Coelho, T.; Chorao, R.; Sausa, A.; Alves, I.; Torres, M. F.; Saraiva,
M. J. Compound heterozygotes of transthyretin Met30 and transthyretin
Met119 are protected from the devastating effects of familial amyloid
polyneuropathy. Neuromuscular Disord. 1996, 6, 27.
(23) Hammarstrom, P.; Schneider, F.; Kelly, J. W. trans-Suppression of
misfolding in an amyloid disease. Science 2001, 293, 2459–2462.
(24) Miller, S. R.; Sekijima, Y.; Kelly, J. W. Native state stabilization by
NSAIDs inhibits transthyretin amyloidogenesis from the most common
familial disease variants. Lab. InVest. 2004, 84, 545–552.
(25) Johnson, S. M.; Petrassi, H. M.; Palaninathan, S. K.; Mohamedmo-
haideen, N. N.; Purkey, H.; Nichols, C.; Chiang, K. P.; Walkup, T.;
Sacchettini, J. C.; Sharpless, K. B.; Kelly, J. W. Bisaryloxime ethers
as potent inhibitors of transthyretin amyloid fibril formation. J. Med.
Chem. 2005, 48, 1576–1587.
(26) Miroy, G. J.; Lai, Z.; Lashuel, H. A.; Peterson, S. A.; Strang, C.; Kelly,
J. W. Inhibiting transthyretin amyloid fibril formation via protein
stabilization. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 15051–15056.
(27) Oza, V. B.; Petrassi, H. M.; Purkey, H. E.; Kelly, J. W. Synthesis and
evaluation of anthranilic acid-based transthyretin amyloid fibril inhibi-
tors. Bioorg. Med. Chem. Lett. 1999, 9, 1–6.
Supporting Information Available: Detailed synthesis and
characterization of the 2-arylbenzoxazoles and tabulation of com-
pound purity as determined by RP-HPLC. This material is available
References
(1) Reixach, N.; Deechongkit, S.; Jiang, X.; Kelly, J. W.; Buxbaum, J. N.
Tissue damage in the amyloidoses: Transthyretin monomers and
nonnative oligomers are the major cytotoxic species in tissue culture.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2817–2822.
(2) Sekijima, Y.; Wiseman, R. L.; Matteson, J.; Hammarstrom, P.; Miller,
S. R.; Sawkar, A. R.; Balch, W. E.; Kelly, J. W. The biological and
chemical basis for tissue selective amyloid disease. Cell 2005, 121,
73–85.
(28) Oza, V. B.; Smith, C.; Raman, P.; Koepf, E. K.; Lashuel, H. A.;
Petrassi, H. M.; Chiang, K. P.; Powers, E. T.; Sachettinni, J.; Kelly,
J. W. Synthesis, structure, and activity of diclofenac analogues as
(3) McCarthy, R. E.; Kasper, E. K. A review of the amyloidoses that
infiltrate the heart. Clin. Cardiol. 1998, 21, 547–552.