unit is usually constructed by the [3 + 2] cycloaddition5,6 or
hetero-Diels-Alder reactions.7 Although these methods are
available, there are still some obvious limitations: the starting
material is complex, and the methods for the synthesis of
optically active pyrazolidines are still very limited.
Recently, the direct enantioselective amination of 2-keto-
esters catalyzed by chiral copper(II)-bisoxazoline complexes
was reported.8 On the basis of our past work,9,10 we reasoned
that pyrazolidines 1 with different substitution patterns may
be generally constructed from π-allypalladium intermediate11
2, which in turn, could be generated easily via the carbo-
palladation of intermediate 3 with allene 412,13 (Scheme 1).
three-component asymmetric tandem addition-cyclization
leading to optically active pyrazolidine derivatives with high
selectivity.
Our first approach was based on the reaction of 2-(2′,3′-
dienyl)-â-ketoesters 5a and dibenzyl azodicarboxylate (DBAD)
6 with PhI (7a). First, the enantioselective amination of 5a
with DBAD 6 in CH2Cl2 provided the corresponding
optically active allenic amide 4a (E1 ) COCH3; E2 )
COOEt; R1 ) R2 ) COOBn) in quantitative yield. Then,
the solvent was removed in vacuo and THF was added to
the reaction mixture followed by treatment with PhI,
Pd(PPh3)4 (5% mol), and K2CO3 (2.0 equiv) under reflux
(Scheme 2). The carbopalladation reaction14 of the allenes
afforded a 2-type π-allyl palladium intermediate,11 which can
be further trapped by the intramolecular nitrogen giving the
corresponding pyrazolidine derivative 1aa in good overall
yields with very high enantioselectivity (Scheme 2). On the
Scheme 1
Scheme 2
The optically active allene 4 may be produced from enantio-
selective copper (II)-catalyzed R-amination of R-allenic-
substituted â-keto esters 5 with azodicarboxylates 6 (Scheme
1). Herein, we describe the Cu- and Pd-catalyzed one-pot
(4) (a) Rahman, M. T.; Nishino, H.; Qian, C.-Y. Tetrahedron Lett. 2003,
44, 5225. (b) Chauveau, A.; Martens, T.; Bonin, M.; Micouin, L.; Husson,
H.-P. Synthesis 2002, 1885. (c) Hanessian, S.; Mcnaughton-Smish, G.;
Lombart, H.-G. Tetrahedron 1997, 53, 12798. (d) Kim, H.-O.; Lum, C.;
Lee, M. S. Tetrahedron Lett. 1997, 38, 4935.
(5) (a) For some reviews, see: (a) Huisgen, R.; Grashey, R.; Sauer, J.
In The Chemistry of Alkenes: Cycloaddition Reactions of Alkenes; Patai,
S., Ed.; Interscience: New York, 1964; pp 739-953. (b) Huisgen, R. 1,3-
Dipolar Cycloaddition Chemistry: 1,3-Dipolar Cycloaddition-Introduction,
SurVey, Mechanism; Padwa, A., Ed.; Wiley-Interscience: New York, 1984;
Vol. 1, pp 1-176. (c) Huisgen, R. AdVance in Cycloaddition: Steric Course
and Mechanism of 1,3-Dipolar Cycloaddition; Curran, D. P., Ed.; JAI
Press: Greenwich, CT, 1988; Vol. 1, pp 1-31.
(6) (a) Kobayashi, S.; Hirabayashi, R.; Shimizu, H.; Ishitani, H.;
Yamashita, Y. Tetrahedron Lett. 2003, 44, 3351. (b) Kobayashi, S.; Shimizu,
H.; Yamashita, Y.; Ishitani, H.; Kobayashi, J. J. Am. Chem. Soc. 2002,
124, 13678. (c) Ja¨ger, V.; Bierer, L.; Dong, H.-Q.; Palmer, A. M.; Shaw,
D.; Frey, W. J. Heterocycl. Chem. 2000, 37, 455. (d) Mish, M. R.; Guerra,
F. M.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 8379. (e) Gallos, J.
K.; Koumbis, A. E.; Apostolakis, N. E. J. Chem. Soc., Perkin Trans. 1
1997, 2457. (f) Khau, V. V.; Martinelli, M. J. Tetrahedron Lett. 1996, 25,
4323.
(7) Ellis, J. M.; King, S. B. Tetrahedron Lett. 2002, 43, 5833.
(8) (a) Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2003, 42, 1367. (b) Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002,
124, 2420. (c) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119,
6452.
(9) Ma, S.; Jiao, N. Angew. Chem., Int. Ed. 2002, 41, 4737.
(10) For some of our most recent results, see: (a) Ma, S.; Duan, D.;
Shi, Z. Org. Lett. 2000, 2, 1419. (b) Ma, S.; Zhang, J. Chem. Commun.
2000, 117. (c) Ma, S.; Li, L. Org. Lett. 2000, 2, 941. (d) Ma, S.; Xie, H.
Org. Lett. 2000, 2, 3801. (e) Ma, S.; Zhao, S. J. Am. Chem. Soc. 1999,
121, 7943. (f) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943.
(11) Shimizu, I.; Tsuji, J. Chem. Lett. 1984, 233. Ahmar, M.; Cazes, B.;
Gore, J. Tetrahedron Lett. 1984, 25, 4505.
basis of these results, it is quite obvious that the enantio-
selectivity for the formation of 4a is very high with the abso-
lute configuration depending on the structure of the ligand.
Although the diastereoselectivity is unsatisfactory, the
diastereoisomers differ greatly in terms of molecular polarity
(Rf(R,R)-1aa ) 0.48, Rf(R,S)-1aa ) 0.35; eluent, petroleum ether/
ether ) 1:1) and therefore can be easily separated and
purified by flash chromatography on silica gel. Then, the
four pure isomers (S,S)-, (S,R)-, (R,R)-, and (R,S)-isomer of
1aa can be conveniently obtained in high yield with very
high ee when both enantiomers of Ph-Box were applied as
the ligand.
(12) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; John
Wiley & Sons: New York, 1984. Patai, S., Ed. The Chemistry of Ketenes,
Allenes, and Related Compounds; John Wiley & Sons: New York, 1980;
Part 1.
(13) (a) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (b) Ma, S.; Zhao,
S. Org. Lett. 2000, 2, 2495. (c) Ma, S.; Jiao, N. Zhao, S.; Hou, H. J. Org.
Chem. 2002, 67, 2837. (d) Ma, S.; Gao, W. Org. Lett. 2002, 4, 2989.
(14) For intermolecular carbopalladation of allenes, see: (a) Cazes, B.
Pure Appl. Chem. 1990, 62, 1867 and references therein. (b) Larock, R.
C.; Berrios-Pena, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615.
2194
Org. Lett., Vol. 6, No. 13, 2004