The authors thank National Natural Science Foundation of
China for financial support (No. 20072007 and 20672039) and
thank the Analytical and Testing Centre at Huazhong University
of Science and Technology for measurement.
Notes and references
1 Review for gel using two-component system: (a) A. R. Hirst and
D. K. Smith, Chem.–Eur. J., 2005, 11, 5496–5408; (b) D. K. Smith, Adv.
Mater., 2006, 18, 2773–2778; (c) D. K. Smith, Chem. Commun., 2006,
34–44.
2 Reviews for gel materials using LMMG: (a) A. Brizard, R. Oda and
I. Huc, Top. Curr. Chem., 2005, 256, 167–218; (b) M. A. B. Block,
C. Kaiser, A. Khan and S. Hecht, Top. Curr. Chem., 2005, 245, 89–150;
(c) X. Y. Gao and H. Matsui, Adv. Mater., 2005, 17, 2037–2050; (d)
T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005, 105,
1401–1443; (e) D. T. Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri,
Angew. Chem., Int. Ed., 2001, 40, 988–1011; (f) P. Terech and R. G.
Weiss, Chem. Rev., 1997, 97, 3133–3159; (g) J. M. Schnur, Science, 1993,
262, 1669–1676; (h) M. George and R. G. Weiss, Acc. Chem. Res., 2006,
39, 489–497; (i) A. D. Guerzo and J.-L. Pozzo, Mol. Gels, 2006,
817–855; (j) T. Ishi-i and S. Shinkai, Top. Curr. Chem., 2005, 258,
119–160.
3 Gel materials using two-component system: (a) A. R. Hirst, D. K. Smith,
M. C. Feiters, H. P. M. Geurts and A. C. Wright, J. Am. Chem. Soc.,
2003, 125, 9010–9011; (b) R. Oda, I. Huc, M. Schmutz, S. J. Candau
and F. C. Mackintosh, Nature, 1999, 399, 566–569; (c) Y. L. Ho,
S. R. Nam and J. I. Hong, J. Am. Chem. Soc., 2007, 129, 1041–1042; (d)
H. A. Behanna, K. Rajangam and S. I. Stupp, J. Am. Chem. Soc., 2007,
129, 321–327; (e) Y. Zhou, M. Xu, T. Yi, S. Xiao, Z. Zhou, F. Li and
C. Huang, Langmuir, 2007, 23, 202–208; (f) M. George,
G. P. Funkhouser, P. Terech and R. G. Weiss, Langmuir, 2006, 22,
7885–7893; (g) S. Arai, K. Imazu, S. Kusuda, I. Yoshihama,
M. Tonegawa, Y. Nishimura, K. Kitahara, S. Oishi and T. Takemura,
Chem. Lett., 2006, 35, 634–635; (h) D. R. Trivedi and P. Dastidar,
Chem. Mater., 2006, 18, 1470–1478; (i) T. Zemp, M. Dubois, B. Deme
and I. Gulik-Krzywicki, Science, 1999, 283, 816–819; (j) S. Yagai,
T. Nakajima, K. Kishikawa, S. Kohmoto, T. Karatsu and A. Kitamura,
J. Am. Chem. Soc., 2005, 127, 11134–11139.
4 (a) N. S. S. Kumar, S. Varghese, G. Narayan and S. Das, Angew.
Chem., Int. Ed., 2006, 45, 6317–6321; (b) A. Ajayaghosh, R. Varghese,
V. K. Praveen and S. Mahesh, Angew. Chem., Int. Ed., 2006, 45,
3261–3264; (c) A. Battaglia and A. J. Ryan, Nat. Mater., 2005, 4,
869–876; (d) F. M. Menger and A. V. Peresypkin, J. Am. Chem. Soc.,
2003, 125, 5340–5345; (e) J. H. Jung, Y. Ono, K. Sakurai, M. Sano and
S. Shinkai, J. Am. Chem. Soc., 2000, 122, 8648–8653; (f) P. Shahgaldian,
A. W. Coleman, S. S. Kuduva and M. J. Zaworotko, Chem. Commun.,
2005, 15, 1968–1970.
5 (a) E. R. Wright, R. A. McMillan, A. Cooper, R. P. Apkarian and
V. P. Conticello, Adv. Funct. Mater., 2002, 12, 149–154; (b) B. Jeong,
K. M. Lee, A. Gutowska and Y. H. An, Biomacromolecules, 2002, 3,
865–868; (c) T. S. Davies, A. M. Ketner and S. R. Raghavan, J. Am.
Chem. Soc., 2006, 128, 6669–6675; (d) C.-W. Kan, E. A. S. Doherty and
A. E. Barron, Electrophoresis, 2003, 24, 4161–4169; (e) T. N. C. Dantas,
V. C. Santanna, A. A. D. Neto, E. L. B. Neto and M. Moura, Colloids
Surf., A, 2003, 225, 129–135; (f) K. Kuroiwa, T. Shibata, N. Takada and
N. Kimizuka, J. Am. Chem. Soc., 2004, 126, 2016–2021; (g) K. S. Moon,
H. J. Kim, E. Jee and M. Lee, Angew. Chem., Int. Ed., 2007, 46, 1–5; (h)
P. J. Shand, H. Ya, Z. Pietrasik and P. K. Wanasundara, Food Chem.,
2007, 102, 1119–1130.
Fig. 5 (A, B and C) TEM images of gel from (A) 1a and D-2, (B) 1b and
D-2, (C) 1c and D-2 (scale bar for A, B and C, 1 mm). (D) AFM images of
gel from 1b and D-2 on freshly broken mica (25 6 25 mm).
that the size of vesicles could be controled by changing the length
of the alkyl groups at the upper rim of the calix[4]arene. This result
is consistent with Jiang et al.’s report in which they found that the
size of the vesicles based on amphiphilic calixarenes decreased with
the increasing length of the hydrophilic chains.9 The structure of
the vesicles resulting from a mixture of 1b and D-2 was confirmed
by AFM images (Fig. 5D) and FE-SEM images (Fig. S9–10{).
AFM imaging showed that the aggregates were spherical entities
with sizes ranging from 1.0 mm to 2.0 mm, which was similar to the
result observed with the TEM images. Probably due to the bigger
size and reduced solubility (shorter alkyl chain) of the vesicles from
1b and 1c compared to 1a, the mixture of 1b or 1c and D-2 is a gel
but that of 1a and D-2 is a solution at room temperature.
In general, with long alkyl group(s), an amphiphile is more
prone to self-assembly due to hydrophobicity and van der Waals
attraction between the long alkyl groups. Therefore not only the
mixture of 1a and L-2 but also that of 1a and D-2 can self-assemble
into nanofibers. However, the fibrous assembles of 1a–D-2 are not
stable due to the unmatched interaction between the chiral centers
of 1a and D-2. The unmatched interaction will increase as the
temperature decreases and the intermolecular distance shortens.
By curving the flat lamellar, the repulsion between the chiral
centers of 1a and D-2 can be reduced, so that fibrous objects
spontaneously transform into vesicles. This is similar to lamellar
gels and spontaneous vesicles in catanionic surfactant mixtures.10
1b and 1c bear slightly shorter alkyl groups and can only form
vesicles because the van der Waals attraction between alkyl groups
decreases and the unmatched interaction of chiral centers of 1 and
D-2 stand out much more. At lower temperatures the vesicle gel
will become more a stable suspension and even precipitate.
In conclusion, for the first time we have demonstrated that
heat-set gels can form through the transformation from vesicles
to nanofibers due to a difference in interaction between two
component chiral gelators. This finding provides a new approach
to heat-set gels, which have potential applications for thermo-
responsive materials.
6 Y.-S. Zheng, A. Ji, X.-J. Chen and J. L. Zhu, Chem. Commun., 2007, 32,
3398–3400.
7 Y.-S. Zheng and Z.-T. Huang, Synth. Commun., 1997, 27, 1237–1245.
8 (a) K. K. Karukstis, C. A. Zieleniuk and M. J. Fox, Langmuir, 2003, 19,
10054–10060; (b) T. Kodama, A. Ohta, K. Toda, T. Asakawa and
S. Miyagishi, Colloids Surf., A, 2006, 277, 20–26; (c) R. M. Minardi,
P. C. Schulz and B. Vuano, Colloids Surf., A, 2002, 197, 167–172; (d)
W. O. McClure and G. M. Edelman, Acc. Chem. Res., 1968, 1, 65–70.
9 M. Lee, S. Lee and L. Jiang, J. Am. Chem. Soc., 2004, 126,
12724–12725.
10 (a) B. A. Coldren, H. Warriner, R. van Zanten and J. A. Zasadzinski,
Langmuir, 2006, 22, 2465–2473; (b) J. I. Escalante, M. Gradzielski,
H. Hoffmann and K. Mortensen, Langmuir, 2000, 16, 8653–8663.
5202 | Chem. Commun., 2007, 5200–5202
This journal is ß The Royal Society of Chemistry 2007