Organic Letters
Letter
both C2 and C3, and the inductively withdrawing carbomethoxy
group in 19 and 20 conspired against this transformation, and no
conditions for the indoline oxidation to 11 were found. Most
standard reagents (MnO2, DDQ, Pd/C, S8, KMnO4) for indoline
oxidation14 were ineffective, returning unreacted starting
materials. More forcing conditions using CAN (Scheme 7, eq
1) or NBS (eq 2) gave overoxidation of the indole producing 24
and 25, respectively.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under Grant Number 1465287.
■
Scheme 7. Attempted Indoline Oxidation
REFERENCES
■
(1) (a) Randriambola, L.; Quirion, J. − C.; Kan-Fan, C.; Husson, H. −
P. Tetrahedron Lett. 1987, 28, 2123.
(2) Hashimoto, C.; Husson, H. − P. Tetrahedron Lett. 1988, 29, 4563.
(3) (a) Lewin, G.; Bernadat, G.; Aubert, G.; Cresteil, T. Tetrahedron
2013, 69, 1622. (b) Lewin, G.; Schaeffer, C.; Lambert, P. H. J. Org. Chem.
1995, 60, 3282. (c) Lewin, G.; Schaeffer, C. Nat. Prod. Lett. 1995, 7, 227.
(4) (a) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem., Int. Ed.
2010, 49, 5767. (b) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc.
2012, 134, 14563. (c) Zhou, S.; Jia, Y. Org. Lett. 2014, 16, 3416.
(5) (a) Takano, S.; Sato, T.; Inomata, K.; Ogasawara, K. J. Chem. Soc.,
Chem. Commun. 1991, 462. (b) Morales, C. L.; Pagenkopf, B. L. Org.
Lett. 2008, 10, 157. (c) Zhou, B.; Du, J.; Yang, Y.; Li, Y. Chem. - Eur. J.
2014, 20, 12768. (d) Xu, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed.
Of course, the goniomitine structure does not possess an N-
acyl indole, so we decided to postpone the indoline oxidation
step and perform the required hydride reduction first (Scheme
8). Previous goniomitine syntheses utilized a reductive
̀
2013, 52, 3272. (e) Wagnieres, O.; Xu, Z.; Wang, Q.; Zhu, J. J. Am.
Chem. Soc. 2014, 136, 15102. (f) Mizutani, M.; Inagaki, F.; Nakanishi,
T.; Yanagihara, C.; Tamai, I.; Mukai, C. Org. Lett. 2011, 13, 1796.
(6) The Pagenkopf synthesis begins with a nitrile (rather than an
aniline) to access intermediate 9. See ref 5b.
Scheme 8. Completion of the Goniomitine Synthesis
(7) (a) Schiedler, D. A.; Vellucci, J. K.; Lu, Y.; Beaudry, C. M.
Tetrahedron 2015, 71, 1448. (b) Schiedler, D. A.; Lu, Y.; Beaudry, C. M.
Org. Lett. 2014, 16, 1160. (c) Schiedler, D. A.; Vellucci, J. K.; Beaudry, C.
M. Org. Lett. 2012, 14, 6092.
(8) For examples, see: (a) Urry, W. H.; Juveland, O. O.; Stacey, F. W. J.
Am. Chem. Soc. 1952, 74, 6155. (b) Bongini, A.; Cardillo, G.; Orena, M.;
Sandri, S.; Tomasini, C. J. Org. Chem. 1986, 51, 4905. (c) Sibi, M. P.; Ji,
J.; Wu, J. H.; Gurtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200.
̈
(9) For examples of aminals involving the indole nitrogen atom, see:
(a) Swaminathan, S.; Narasimhan, K. Chem. Ber. 1966, 99, 889.
(b) Katritzky, A. R.; Rewcastle, G. W.; Fan, W.−Q. J. Org. Chem. 1988,
53, 5685. (c) Katritzky, A. R.; Rachwal, S.; Rachwal, B. J. Chem. Soc.,
Perkin Trans. 1 1987, 799. (d) Love, B. E.; Nguyen, T. Synlett 1998,
1998, 1123. (e) Love, B. J. Org. Chem. 2007, 72, 630. (f) Hellmann, H.;
Haas, G. Chem. Ber. 1957, 90, 53. (g) Guillard, J. Heterocycles 2003, 60,
865.
(10) Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation
for Organic Synthesis; John Wiley & Sons: New York, 2001; pp 583−593.
(11) Williams, R. M.; Kwast, E. Tetrahedron Lett. 1989, 30, 451.
(12) Iodide 15 is commercially available; however, it can be prepared in
one step from o-iodobenzaldehyde: Grigg, R.; Inman, M.; Kilner, C.;
Koeppen, I.; Marchbank, J.; Selby, P.; Sridharan, V. Tetrahedron 2007,
63, 6152.
(13) For related radical translocation reactions, see: (a) Lathbury, D.
C.; Parsons, P. J.; Pinto, I. J. Chem. Soc., Chem. Commun. 1988, 81.
(b) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988,
110, 5900. (c) Robertson, J.; Peplow, M. A.; Pillai, J. Tetrahedron Lett.
1996, 37, 5825. (d) Curran, D. P.; Abraham, A. C.; Liu, H. J. Org. Chem.
1991, 56, 4335. (e) Beaulieu, F.; Arora, J.; Veith, U.; Taylor, N. J.;
Chapell, B. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 8727.
(14) Handbook of Reagents for Organic Synthesis: Oxidizing and
Reducing Agents; Burke, S. D., Danheiser, R. L., Eds.; John Wiley & Sons:
Chichester, 1999.
cyclization sequence of compounds with structure 7 (Scheme
1) that was promoted by LiAlH4. Treatment of 19 and 20 with
LiAlH4 in hot THF for 12 h, followed by an aqueous workup,
gave a mixture of compounds with spectroscopic characteristics
consistent with the desired reduction products 26 as a complex
mixture of diastereomers. Gratifyingly, intermediates 26 under-
went smooth oxidation with MnO2 to give the natural product as
the only isolable product. The combined yield of goniomitine
from radical translocation products 19 and 20 was 51%.
In summary, we have completed a synthesis of the
aspidosperma alkaloid goniomitine. The synthesis requires six
synthetic transformations from ethyl δ-valerolactam and has an
overall yield of 29%, which makes it the most efficient synthesis
of ( )-goniomitine to date. Key features of this synthesis are the
strategic use of a δ-valerolactam starting material and a radical
translocation reaction to build the indole B-ring. Efforts to extend
this strategy in other alkaloid targets are underway in our
laboratory.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, spectroscopic data, depiction of
1H and 13C NMR spectra for all new compounds (PDF)
C
Org. Lett. XXXX, XXX, XXX−XXX