C O M M U N I C A T I O N S
Table 3. Oxy-Michael of δ-Hydroxy-R,â-enones
(2) For examples of asymmetric Michael additions of oxygen-centered
nucleophiles, see, (a) alcohols: Kano, T.; Tanaka, Y.; Maruoka, K.
Tetrahedron 2007, 63, 8658-8664. (b) Oximes: Bertelsen, S.; Diner, P.;
Johansen, R. L.; Jorgensen, K. A. J. Am. Chem. Soc. 2007, 129, 1536-
1537. Vanderwal, C. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
14724-14725. (c) Phenols: Govender, T.; Hojabri, L.; Moghaddam, F.
M.; Arvidsson, P. I. Tetrahedron: Asymmetry 2006, 17, 1763-1767.
(3) Chandrasekhar, S.; Rambabu, C.; Shyamsunder, T. Tetrahedron Lett. 2007,
48, 4683-4685.
(4) Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 2446-2453.
(5) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006,
128, 9328-9329.
(6) Watanabe, H.; Machida, K.; Itoh, D.; Nagatsuka, H.; Kitahara, T. Chirality
2001, 13, 379-385.
(7) For a review of asymmetric organocatalytic oxy-Michael additions, see:
Berkessel, A.; Groerger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim, Germany, 2005; Chapter 4.
(8) Falck, J. R.; Bondlela, M.; Venkataraman, S. K.; Srinivas, D. J. Org.
Chem. 2001, 66, 7148-7150.
(9) (a) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007,
129, 6686-6687. (b) Oshima, K.; Aoyama, Y. J. Am. Chem. Soc. 1999,
121, 2315-2316. (c) Matteson, D. S. Pure Appl. Chem. 2003, 75, 1249-
1253.
(10) Amine-borate complexes are well-known: Gillis, E. P.; Burke, M. D. J.
Am. Chem. Soc. 2007, 129, 6716-6717.
(11) Rehybridization of the boron center from sp2 to sp3 via coordination with
trivalent nitrogen was unambiguously supported by the upfield chemical
shift in the 11B NMR as described in Supporting Information section and
ref 9b.
(12) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672-12673. (b) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soos, T. Org.
Lett. 2005, 7, 1967-1969.
(13) The critical role played by thiourea hydrogen bonding in the activation
of the enone is evident from a control experiment in which the thiourea
catalyst 8 was replaced with 20 mol% O-benzoylquinine (Shi, M.; Lei,
Z.-Y.; Zhao, M.-X.; Shi, J.-W. Tetrahedron Lett. 2007, 48, 5743-5746).
Diol 12 was obtained in <5% yield and the majority of starting 4 was
recovered unchanged.
a Isolated yield. b Determined by chiral HPLC; absolute configuration
assigned in analogy with natural 44 and chemical correlation of 40 with a
known intermediate (see ref 18). c Reaction conditions: (i) ArB(OH)2 (1.2
equiv), 8 (20 mol %), 4 Å MS, toluene, 50 °C; (ii) H2O2, Na2CO3, room
temp, 15 min. d Catalyst 9 (20 mol %) was used. e Catalyst 10 (20 mol %)
was used.
(14) Enantiomeric ratio measured by chiral HPLC.
(15) Absolute configuration assigned by comparison with literature optical
rotation data: Ticozzi, C.; Zanarotti, A. Tetrahedron Lett. 1994, 35, 7421-
7424.
of boronates offers unique opportunities for stereoselective ma-
nipulations. As an illustration, the oxy-Michael adduct formed in
situ from 4 and phenylboronic acid under catalysis by 8 acted as a
template for the stereoselective addition of allenylboronic acid to
the carbonyl, possibly via intermediate 45 (eq 2). Diol 46 was
generated, without isolation of intermediates, in good overall yield
and diastereoselectivity.20,21 Further developments including dias-
tereoselective and intermolecular oxy-Michael additions are under
investigation.
(16) Synthesis: MacLeod, J. K.; Scha¨ffeler, L. J. Nat. Prod. 1995, 58, 1270-
1273. Interestingly, the (S)-enantiomer is inactive.
(17) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1993, 58, 3791-
3793.
(18) Selective primary silylation of 40 (TBDPSCl, DCM, DMAP, room temp,
10 h) followed by p-methoxybenzylation (PMB-O(NH)CCl3) gave com-
pound (i): [R]20 ) +5.9 (c 0.85, CHCl3); lit. [R]20 ) +4.8 (c 1.49,
D
CHCl3). See, Li,DD. R.; Zhang, D.-H.; Sun, C.-Y.; Zhang, J.-W.; Yang,
L.; Chen, J.; Liu, B.; Su, C.; Zhou, W.-S.; Lin, G.-Q. Chem. Eur. J. 2006,
12, 1185-1204.
Acknowledgment. 11B NMR was measured by Dr. RenSheng
Luo (UMSL), X-ray analysis was performed by Radha Akella
(UTSW), and financial support was provide by the Robert A. Welch
Foundation and NIH (Grant GM31278, DK38226).
(19) Dollt, H.; Hammann, P.; Blechert, S. HelV. Chim. Acta 1999, 82, 1111-
Supporting Information Available: Synthetic procedures, analyti-
cal data, X-ray, and NMR spectra for all new compounds. This material
1122 and references cited therein.
(20) A similar diastereoselective addition of allenylboronic acid to â-hydoxy
ketones has been reported: Ikeda, N.; Omori, K.; Yamamoto, H.
Tetrahedron Lett. 1986, 27, 1175-1178.
(21) The absolute configuration of 46 was confirmed by X-ray analysis (see
References
Supporting Information).
(1) Recent review: Schetter, B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006,
45, 7506-7525.
JA076802C
9
48 J. AM. CHEM. SOC. VOL. 130, NO. 1, 2008