C O M M U N I C A T I O N S
Scheme 5. Deuterium-Labeling Studiesa
Supporting Information Available: Full experimental details and
copies of NMR spectral data. This material is available free of charge
References
(1) Reviews: (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (b) Ikeda,
S. Acc. Chem. Res. 2000, 33, 511. (c) Montgomery, J. Angew. Chem.,
Int. Ed. 2004, 43, 3890. (d) Jang, H. Y.; Krische, M. J. Acc. Chem. Res.
2004, 37, 653. (e) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem.
Commun. 2007, 4441. (f) Montgomery, J. Top. Curr. Chem. 2007, 279,
1. (g) Iida, H.; Krische, M. J. Top. Curr. Chem. 2007, 279, 77. (h) Kimura,
M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173.
(2) (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (b) Ojima, I.; Tzamari-
oudaki, M.; Li, Z.; Donovan, R. J. Chem. ReV. 1996, 96, 635. (c)
Widenhoefer, R. A. Acc. Chem. Res. 2002, 35, 905.
(3) (a) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030. For
mechanistically related processes, see: (b) Takacs, J. M.; Leonov, A. P.
Org. Lett. 2003, 5, 4317. (c) Chang, H-T.; Jayanth, T. T.; Cheng, C.-H.
J. Am. Chem. Soc. 2007, 129, 4166.
(4) Herath, A.; Thompson, B. B.; Montgomery, J. J. Am. Chem. Soc. 2007,
129, 8712. (b) For related studies with cobalt, see: Chang, H.-T.; Jayanth,
T. T.; Wang, C.-C.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 12032.
(5) For other classes of reactions that involve internal redox: (a) Tanaka, K.;
Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1607. (b) Willis, M. C.;
Woodward, R. L. J. Am. Chem. Soc. 2005, 127, 18012. (c) Reynolds, N.
T.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518. (d)
Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (e) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
6205. (f) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. (g) Sohn, S.
S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021. (h) Zeitler, K.
Org. Lett. 2006, 8, 637. (i) Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Org.
Lett. 2007, 9, 3519. (j) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007,
129, 13796. (k) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129,
13798.
a Yields are based upon methyl vinyl ketone.
in 73% yield with >95% deuterium incorporation at the expected
alkenyl position. The same result was obtained with the Ni(COD)2/
IPr catalyst system with the reversed regioselectivity as expected.
To probe the molecularity of the formal 1,5-hydrogen migration, a
crossover experiment was performed. Beginning with 1.25 equiv
each of d1-benzaldehyde and 2-furaldehyde, methyl vinyl ketone
(1.0 equiv) and 1-phenyl propyne (1.5 equiv), a catalytic coupling
involving the Ni(COD)2/PCy3-based conditions was performed.
Product 15 was obtained in 25% yield with >95% deuterium
incorporation, whereas product 16, obtained in 40% yield, possessed
<5% deuterium incorporation. A related crossover experiment with
3-hexyne and the Ni(COD)2/IPr catalyst system also afforded >95%
deuterium incorporation in the phenyl-containing product. These
experiments unambiguously establish an intramolecular hydrogen
migration and rule out alternate mechanisms that could involve a
preformed nickel-hydride active catalyst.14
Analogies to a number of classical organic-organic reactions
can be drawn to the processes reported herein. For example, the
Cannizzaro15 and Evans-Tishchenko16 reactions involve a hydride
transfer event from hemiacetal intermediates to an electrophilic unit.
The formation of product 5 (Scheme 2) and product 11 (Scheme
4) involves a conceptually related hydride transfer event, but the
hydride transfer to an alkyne is now allowed by these new
procedures. Therefore, the developments in this paper may be
viewed as unusual extensions of these classical reactions, albeit
with very different mechanisms involved.
(6) (a) Amarasinghe, K. K. D.; Chowdhury, S. K.; Heeg, M. J.; Montgomery,
J. Organometallics 2001, 20, 370. (b) Hratchian, H.; Chowdhury, S. K.;
Gutie´rrez-Garc´ıa, V. M.; Amarasinghe, K. K. D.; Heeg, M. J.; Schlegel,
H. B.; Montgomery, J. Organometallics 2004, 23, 4636.
(7) Han, R.; Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 8135.
(8) (a) Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery,
J. J. Am. Chem. Soc. 2000, 122, 6775. (b) Mahandru, G. M.; Skauge, A.
R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.;
Montgomery, J. J. Am. Chem. Soc. 2003, 125, 13481. (c) Burkhardt, E.
R.; Bergman, R. G.; Heathcock, C. H. Organometallics 1990, 9, 30. (d)
Campora, J.; Maya, C. M.; Palma, P.; Carmona, E.; Gutie´rrez-Puebla, E.;
Ruiz, C. J. Am. Chem. Soc. 2003, 125, 1482.
(9) For rare examples, see: (a) Gevorgyan, V.; Radhakrishnan, U.; Takeda,
A.; Rubina, M.; Rubin, M.; Yamamoto, Y. J. Org. Chem. 2001, 66, 2835.
(b) Tanaka, R.; Nakano, Y.; Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem.
Soc. 2002, 124, 9682.
(10) (a) Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am. Chem.
Soc. 2005, 127, 13156. (b) Chaulagain, M. R.; Sormunen, G. J.;
Montgomery, J. J. Am. Chem. Soc. 2007, 129, 9568.
(11) Alkene directing effects provide a solution to this problem in aldehyde/
alkyne couplings: (a) Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.;
Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 4130. (b) Miller, K. M.;
Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 15342. (c) Moslin, R.;
Jamison, T. F. Org. Lett. 2006, 8, 455. (d) Mahandru, G. M.; Liu, G.;
Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698.
(12) Chapdelaine, M. J.; Hulce, M. In Organic Reactions; Paquette, L. A.,
Ed.; Wiley: New York, 1990; Vol. 38, pp 225-653.
(13) (a) Tekevac, T. N.; Louie, J. Org. Lett. 2005, 7, 4037. (b) Tsuda, T.;
Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55, 2554.
(14) (a) Wilke, G. Angew. Chem., Int. Ed. 1988, 27, 185. (b) Nomura, N.; Jin,
J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 459. (c)
Zhang, A. B.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128, 54.
(15) Geissman, T. A. In Organic Reactions; Adams, R., Ed.; Wiley: New York,
1944; Vol. 2, pp 94-113.
(16) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
In summary, two distinct three-component catalytic processes
have been discovered: the coupling of alcohols, alkynes, and enals,
and the coupling of aldehydes, alkynes, and enones. Both of the
processes involve internal redox and proceed in the absence of
reducing agents that have previously been required in many nickel-
catalyzed couplings of these classes of reagents. The high extent
of chemoselectivity is unusual, particularly for aldehyde, enone,
alkyne couplings that involve three different π-components. We
believe that engineering internal redox into reactions of this type
will constitute a strategy of broad utility.17
Acknowledgment. The authors wish to acknowledge receipt
of NSF Grant CHE-0718250 and a Pfizer Michigan Green
Chemistry Award in support of this work.
(17) For a recent illustration in a different context, see: Bower, J. F.; Skucas,
E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007 129, 15134.
JA0781846
9
J. AM. CHEM. SOC. VOL. 130, NO. 2, 2008 471