cytotoxicity against pancreatic,4b,5 colon,4c,e,f,6 breast, prostate,
and melanoma cancers,4d clearly indicating the potential of
this compound class as a platform useful in targeting multiple
cancers.
Synthesis of macrocyclic decapeptides is difficult due to
cyclizations that typically generate compounds in low yields.
There have been a number of recent examples in the synthesis
of large macrocyclic peptides that have utilized either
solution-phase, solid-phase, chemoenzymatic, or template-
directed synthesis.7 Further, there are a significant number
of large macrocycles, ranging from 4 to 12 amino acids that
have been successfully used as antitumor, antibiotic, and
immunosupression agents.7,8 In this paper, we describe a
succinct and convergent approach of the synthesis of five
San A-based decapeptides. One of these five compounds
displays extraordinary potency against pancreatic cancers and
has sub-nanomolar IC50 values for two pancreatic cancer cell
lines. In addition, this compound demonstrates a 33-fold
differential selectivity for cancer cells over normal cells and
is 43-fold more potent against pancreatic cancer cell lines
than the current drug of choice, gemcitabine (Gem). Thus,
this is the first of its structural class to be synthesized, and
this new class demonstrates extraordinary potency against
drug-resistant pancreatic cancer cell lines. Indeed, it shows
greater than 1000-fold more potency than its structural
“monomer”: macrocyclic pentapeptide San A. Further, these
decapeptides molecules share no homology to known
pancreatic cancer drugs.
Our succinct and convergent synthesis utilizes the amino
acids shown (Figure 1) and the synthetic strategy described
in Scheme 1. Our solution-phase approach, involving a single
linear pentapeptide, is amenable to inserting L- and D-amino
acids systematically within the di-San A derivative. This
route was also designed to facilitate large-scale synthesis for
extensive biological studies. Syntheses of five di-San A
derivatives were completed using amino acids shown (Figure
1) via the synthetic route outlined (Scheme 1). Using 2(1H-
benzotriazole-1-yl)-1,1,3-tetramethyluronium tetrafluorobo-
rate (TBTU) and diisopropylethylamine (DIPEA), acid-
protected residue 1(a-b) and N-Boc protected residue 2(a-
Figure 1. Retrosynthetic approach for di-SanA.
Scheme 1. Synthesis of Decapeptides Derivatives
(5) (a) Pan, P.-S.; McGuire, K. L.; McAlpine, S. R. Bioorg. Med. Chem.
Lett. 2007, 17, 5072-5077. (b) Ujiki, M.; Milam, B.; Ding, X.-Z.; Roginsky,
A. B.; Salabat, M. R.; Talamonti, M. S.; Bell, R. H.; Gu, W.; Silverman,
R. B.; Adrian, T. E. Biochem. Biophys. Res. Commun. 2006, 340, 1224-
1228.
(6) Belofsky, G. N.; Jensen, P. R.; Fenical, W. Tetrahedron Lett. 1999,
40, 2913-2916.
(7) (a) Qin, C.; Bu, X.; Zhong, X.; Ng, N. L. J.; Guo, Z. J. Comb. Chem.
2004, 6, 398-406. (b) Qin, C.; Bu, X.; Wu, X.; Guo, Z. J. Comb. Chem.
2003, 5, 353-355. (c) Wadhwani, P.; Afonin, S.; Ieronimo, M.; Buerck,
J.; Ulrich, A. J. Org. Chem. 2005, 71, 55-61. (d) Tsuchida, K.; Chaki, H.;
Takakura, T.; Kotsubo, H.; Tanaka, T.; Aikawa, Y.; Shiozawa, S.; Hirono,
S. J. Med. Chem. 2006, 49, 80-91. (e) Wagner, B.; Schumann, D.; Linne,
U.; Koert, U.; Marahiel, M. A. J. Am. Chem. Soc. 2006, 128, 10513-10520.
(f) Malkinson, J. P.; Anim, M. K.; Zloh, M.; Searcey, M. J. Org. Chem.
2005, 70, 7654-7661. (g) Adrio, J.; Cuevas, C.; Manzanares, I.; Joullie´,
M. M. J. Org. Chem. 2007, 72, 5129-5138. (h) Gru¨newald, J.; Marahiel,
M. A. Microbiol. Mol. Biol. ReV. 2006, 70, 121-146. (i) van Maarseveen,
J. H.; Horne, W. S.; Ghadiri, M. R. Org. Lett. 2005, 7, 4503-4506.
Decapeptides, peptides, and macrocyclic peptides: (j) Dutton, F. E.; Lee,
B. H.; Johnson, S. S.; Coscarelli, E. M.; Lee, P. H. J. Med. Chem. 2003,
46, 2057-2073.
*TBTU (1.2 equiv) and/or HATU (0.75 equiv).19
(8) (a) Hruby, V. J. Nature ReV. Drug DiscoVery 2002, 1, 847-858. (b)
Loffet, A. Eur. Peptide Soc. 2002, 8, 1-7.
178
Org. Lett., Vol. 10, No. 2, 2008