T. Tanabe, N. Takeda, N. Tokitoh
SHORT COMMUNICATION
(PPh3)], 135.3 [AAЈX pattern, 1/2(2JCP
+
4JCP) = 5.5 Hz, CH, o-
[8]
a) T. Matsumoto, K. Tatsumi, Chem. Lett. 2001, 964–965; b)
T. Matsumoto, Y. Nakaya, K. Tatsumi, Organometallics 2006,
25, 4835–4845.
Such as TbtB(µ-S)2TiCp2, AlL(µ-S)2MCp2, and Dep(Dip)
Ge(µ-S)2Ru(η6-benzene) (Cp = C5H5, M = Ti, Zr), see refs.[6–8]
a) N. Tokitoh, H. Suzuki, R. Okazaki, J. Am. Chem. Soc. 1993,
115, 10428–10429; b) H. Suzuki, N. Tokitoh, R. Okazaki, Bull.
Chem. Soc. Jpn. 1995, 68, 2471–2481.
Recently, we reported the synthesis of (silanedichalcogenolato)-
titanium complexes by the reaction of a disilene 4 with
Cp2TiE5: N. Takeda, T. Tanabe, N. Tokitoh, Bull. Chem. Soc.
Jpn. 2006, 79, 1573–1579.
Ph (PPh3)], 136.6 (C), 137.9 (C), 141.9 (C), 143.1 (C), 143.3 (C),
151.3 (C), 151.6 (C) ppm. 29Si NMR (59 MHz, C6D6): δ = 1.6, 2.5,
14.1 ppm. 31P NMR (120 MHz, C6D6): δ = 21.2 (s, with platinum
[9]
1
satellites, JPPt = 3047 Hz) ppm. 195Pt NMR (64 MHz, C6D6,
[10]
1
Na2PtCl4): δ = –4527.7 (t, JPtP = 3047 Hz) ppm. UV/Vis (n-hex-
ane): λmax = 290 (br., ε = 4ϫ104), 269 (br., ε = 6ϫ104), 232 (br.,
ε = 1ϫ105), 209 (ε = 2ϫ105) nm. HRMS (FAB+): calcd. for
[11]
[12]
C72H100P2195PtS2Si7
[M]+
1481.4774,
found
1481.4771.
C72H100P2PtS2Si7 (1483.32): calcd. C 58.30, H 6.80, S 4.32; found
C 58.39, H 6.89, S 4.31.
Crystal data for 1: The intensity data were collected with a
Rigaku/MSC Mercury CCD diffractometer with graphite-mo-
nochromated Mo-Kα radiation (λ = 0.71070 Å). The structures
were solved by direct methods (SIR-97) and refined by full-
matrix least-squares procedures on F2 for all reflections
(SHELXL-97). Formula C36H72S2Si7, MW = 765.69; triclinic;
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, spectroscopic data, and crystal data
of 3, 7, 9a and 9b.
¯
space group P1 (#2); a = 9.2535(4), b = 15.9925(5), c =
Acknowledgments
15.8055(7) Å; α = 82.9726(15), β = 81.7950(17), γ = 81.365(4)°;
V = 2276.62(16) Å3; Z = 2; µ = 0.324 mm–1; Dcalcd.
=
This work was supported in part by Grants-in-Aid for Creative
Scientific Research (17GS0207), Scientific Research on Priority
Area (No. 14078213), COE Research on Elements Science (No.
12CE2005), and the 21st Century COE Program, Kyoto University
Alliance for Chemistry, from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. We are grateful to Dr. Tak-
ahiro Sasamori, Institute for Chemical Research, Kyoto University,
for the valuable discussions.
1.117 gcm–3; 2θmax = 51.0°; T = 103(2) K; R1 [IϾ2σ(I)] =
0.0563; wR2 (all data) = 0.1350; GOF = 1.049 for 8315 reflec-
tions and 427 parameters. CCDC-627421 (1) contains the sup-
plementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
Crystal data for 3 and 7 are given in the Supporting Infor-
mation. CCDC-627422 (3) and -627425 (7) contain the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
We have already reported the synthesis of the stable si-
lanethione and silaneselone, Tbt(Tip)Si=Ch (Ch = S, Se; Tip
= 2,4,6-triisopropylphenyl). They should be related compounds
to compounds 1, 3, and 7, since the hydrolyzed products of
the silanethione and silaneselone are Tbt(Tip)Si(OH)(SH) and
Tbt(Tip)Si(OH)(SeH), which have already been reported. For
reviews on heavy ketones, see: R. Okazaki, N. Tokitoh, Acc.
Chem. Res. 2000, 33, 625–630.
[13]
[1] For reviews, see; a) D. Coucouvanis, Acc. Chem. Res. 1991, 24,
1–8; b) H. Weller, Angew. Chem. Int. Ed. Engl. 1993, 32, 41–
53; c) M. Hidai, S. Kuwata, Y. Mizobe, Acc. Chem. Res. 2000,
33, 46–52.
[2] a) L. Cai, R. H. Holm, J. Am. Chem. Soc. 1994, 116, 7177–
7178; b) D. T. T. Tran, N. J. Taylor, J. F. Corrigan, Angew.
Chem. Int. Ed. 2000, 39, 935–937; c) P. A. Shapely, H.-C. Li-
ang, N. C. Dopke, Organometallics 2001, 20, 4700–4704; d) T.
Komuro, T. Matsuo, H. Kawaguchi, K. Tatsumi, Angew. Chem. [14] A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
Int. Ed. 2003, 42, 465–468.
[15] The absorptions assignable to the E–H (E = O, S, Se) vi-
[3] T. Komuro, T. Matsuo, H. Kawaguchi, K. Tatsumi, Chem.
Commun. 2002, 988–989.
brations with E–H–E hydrogen bonding should be broadened
and shifted to lower wavenumbers. For example,
[Ru(SH2)(PPh3)‘S4’] shows one broad band for ν(S–H···S) at
2300 cm–1(KBr): D. Sellmann, P. Lechner, F. Knoch, M. Moll,
J. Am. Chem. Soc. 1992, 114, 922–930.
[4] a) D. M. Giolando, T. B. Rauchfuss, G. M. Clark, Inorg. Chem.
1987, 26, 3080–3082; b) J. Albertsen, R. Steudel, J. Organomet.
Chem. 1992, 424, 153–158; c) T. Komuro, T. Matsuo, H. Kawa-
guchi, K. Tatsumi, Inorg. Chem. 2003, 42, 5340–5347.
[5] There are only few reports on dialkyl- or diarylsilanedithiols.
Dimethylsilanedithiol has been characterized only by IR spec-
troscopy due to its extreme instability: G. Gattow, H. P. De-
wald, Z. Anorg. Allg. Chem. 1991, 604, 63–67. As for diphenyl-
silanedithiol, only the boiling point has been reported: Y. Cai,
B. P. Roberts, Tetrahedron Lett. 2001, 42, 763–766. Syntheses
and some reactions of several dialkoxysilanedithiols have been
reported: a) W. Wojnowski, M. Wojnowska, Z. Anorg. Allg.
Chem. 1972, 389, 302–306; b) W. Wojnowski, M. Wojnowska,
Z. Anorg. Allg. Chem. 1973, 398, 167–172; c) W. Wojnowski,
A. Herman, Z. Anorg. Allg. Chem. 1976, 425, 91–96; d) W.
Wojnowski, E. W. Felcyn, Z. Anorg. Allg. Chem. 1987, 546,
229–234.
[16] For the experimental procedure, spectral and crystal data for
9a, see the Supporting Information. CCDC-627423 (9a) con-
tains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/data_
request/cif.
[17] Crystal data for 9b (9b·hexane): Formula C78H114P2PtS2Si7,
¯
MW = 1569.47; triclinic; space group P1 (#2); a = 13.7853(8),
b = 16.8910(9), c = 21.0444(17) Å; α = 113.276(7), β =
102.504(4), γ = 92.842(3)°; V = 4344.4(5) Å3; Z = 2; µ =
1.833 mm–1; Dcalcd. = 1.200 Mg/m3; 2θmax = 50.0°; T = 173(2)
K; R1 [IϾ2σ(I)]
= 0.0511; wR2 (all data) = 0.1272;
GOF = 1.078 for 15211 reflections and 870 parameters.
CCDC-627424 (9b) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Center via
www.ccdc.cam.ac.uk/data_request/cif.
[6] a) N. Tokitoh, M. Ito, R. Okazaki, Organometallics 1995, 14,
4460–4462; b) M. Ito, N. Tokitoh, R. Okazaki, Organometallics
1997, 16, 4314–4319.
[7] a) V. Jancik, Y. Peng, H. W. Roesky, J. Li, D. Neculai, A. M.
Neculai, R. Herbst-Irmer, J. Am. Chem. Soc. 2003, 125, 1452–
1453; b) V. Jancik, H. W. Roesky, D. Neculai, A. M. Neculai,
R. Herbst-Irmer, Angew. Chem. Int. Ed. 2004, 43, 6192–6196.
[18] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen,
F. J. Timmers, Organometallics 1996, 15, 1518–1520.
Received: December 22, 2006
Published Online: February 13, 2007
1228
www.eurjic.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2007, 1225–1228