BF4) represents a major advance for electrophilic fluorination
since it is a reliable, mild, stable, inexpensive, yet effective
reagent.5 During our study on the chemistry of allenes,6 we
imagined that the fluorine chemistry of allenes, which has not
been well established,7 may be a nice way to introduce fluorine
atoms into organic molecules. In this paper, we wish to disclose
our recent observation on an effective monofluorination protocol
via the electrophilic fluorolactonization of easily available 2,3-
allenoic acids.8
In fact, we started our work by fluorinating a series of
substituted unsaturated carboxylic acids, such as 3-undecaynoic
acid or 4-phenyl-3-butenoic acid,9 which afforded complicated
mixtures (Scheme 1).
An Efficient Approach for Monofluorination via
Aqueous Fluorolactonization Reaction of
2,3-Allenoic Acids with Selectfluor
Chao Zhou,† Zhichao Ma,† Zhenhua Gu,‡
Chunling Fu,*,† and Shengming Ma*,†,‡
Laboratory of Molecular Recognition and Synthesis, Department
of Chemistry, Zhejiang UniVersity, Hangzhou 310027, Zhejiang,
P. R. China, and State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R.
China
Further study indicates that although the fluorinating reaction
of 2,3-allenoic acid 2a with Selectfluor 1 in EtOH failed to
afford â-fluorobutenolide 3a (entry 1, Table 1), the reaction in
EtOH/H2O (20:1) afforded 3a in 50% yield together with some
byproducts (entry 2, Table 1), indicating the effect of H2O. The
reaction in DMF, DMA, or MeNO2 in the presence of 10 equiv
of H2O afforded 3a in 63-76% yields (entries 3-5, Table 1).
Further screening led to the observation that MeCN is the best
ReceiVed NoVember 8, 2007
(4) (a) Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1986,
27, 4465. (b) Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.;
Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, 112, 8563. (c) Resnati,
G.; DesMarteau, D. D. J. Org. Chem. 1991, 56, 4925. (d) DesMarteau, D.
D.; Xu, Z.-Q.; Witz, M. J. Org. Chem. 1992, 57, 629.
(5) (a) Banks, R. E. (Air Products and Chemicals, Inc.) US 5,086,178,
1992, 9. (b) Banks, R. E.; Lawrence, N. J.; Popplewell, A. L. Synlett 1994,
831. (c) Banks, R. E.; Besheesh, M. K.; Mohialdin-Khaffaf, S. N.; Sharif,
I. J. Chem. Soc., Perkin Trans. 1 1996, 2069. (d) Nyffeler, P. T.; Duron, S.
G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem., Int. Ed.
2005, 44, 192. (e) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37,
31.
We have developed a convenient method for the efficient
monofluorination via the electrophilic fluorocyclization reac-
tion of 2,3-allenoic acids with Selectfluor in MeCN in the
presence of 10 equiv of H2O or even in pure water to afford
â-fluorobutenolides in moderate to high yields.
(6) For reviews on the chemistry of allenes, see: (a) Zimmer, R.; Dinesh,
C.; Nandanan, E.; Khan, F. Chem. ReV. 2000, 100, 3067. (b) Marshall, J.
A. Chem. ReV. 2000, 100, 3163. (c) Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2000, 39, 3590. (d) Bates, R.; Satcharoen, V. Chem. Soc. ReV. 2002,
31, 12. (e) Sydnes, L. Chem. ReV. 2003, 103, 1133. (f) Ma, S. Acc. Chem.
Res. 2003, 36, 701. (g) Brandsma, L.; Nedolya, N. A. Synthesis 2004, 735.
(h) Tius, M. A. Acc. Chem. Res. 2003, 36, 284. (i) Wei, L.-L.; Xiong, H.;
Hsung, R. P. Acc. Chem. Res. 2003, 36, 773. (j) Lu, X.; Zhang, C.; Xu, Z.
Acc. Chem. Res. 2001, 34, 535. (k) Wang, K. K. Chem. ReV. 1996, 96,
207. (l) Ma, S. Chem. ReV. 2005, 105, 2829. (m) Ma, S. Aldrichim. Acta
2007, 40, 91. For a monograph on the chemistry of allenes, see: Krause,
N.; Hashmi, A. S. K. Modern Allene Chemistry; Wiley-VCH: Weinheim,
2004. For a recent review on the synthesis of allenes: Brummond, K. M.;
DeForrest, J. E. Synthesis 2007, 795.
(7) The reports on the fluorination based on allenes are very limited.
For electrophilic monofluorination of 1,2- or 2,3-allenylsilanes, see: (a)
Carroll, L.; Pacheco, M. C.; Garcia, L.; Gouverneur, V. Chem. Commun.
2006, 4113. (b) Pacheco, M. C.; Gouverneur, V. Org. Lett. 2005, 7, 1267.
(8) For a most recent review on electrophilic cyclization of functionalized
allenes, see: Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry; Wiley-
VCH: Weinheim, 2004; Chapter 10. For electrophilic halolactonization of
2,3-allenoic acids or 2,3-allenoates from this group, see: (a) Fu, C.; Ma, S.
Eur. J. Org. Chem. 2005, 2942. (b) Ma, S.; Shi, Z.; Yu, Z. Tetrahedron
Lett. 1999, 40, 2393. (c) Ma, S.; Wu, B.; Shi, Z. J. Org. Chem. 2004, 69,
1429.
(9) (a) For fluorolactonization of 4-phenyl-3-butenoic acid with Select-
fluor, see: Serguchev, Yu. A.; Lourie, L. F.; Shevchenko, G. V.; Chernega,
A. N. Zh. Org. ta Farm. Khim. 2005, 3, 28. (b) For fluorolactonization of
norbornenecarboxylic acids with Selectfluor and XeF2, see: Lourie, L. F.;
Serguchev, Y. A.; Shevchenko, G. V.; Ponomarenko, M. V.; Chernega, A.
N.; Rusanov, E. B.; Howard, J. A. K. J. Fluorine Chem. 2006, 127, 377.
(c) For fluorolactonization of 4-alkenoic acid derivatives with N-fluoro-
pentachloropyridinium triflate, see: Okada, M.; Nakamura, Y.; Horikawa,
H.; Inoue, T.; Taguchi, T. J. Fluorine Chem. 1997, 82, 157. In most cases
shown above, the reaction afforded a mixture of fluorine-containing lactones
with poor selectivity.
Although there are extremely rare organic fluorine metabolites
in nature, bioactive organofluorine compounds play a very
important role in modern medicinal chemistry;1 therefore, it is
not surprising that the development of new methods for the
efficient introduction of fluorine atom into organic compounds
is of current interest. Although fluorine itself is one of the most
powerful reagents, it is usually too reactive for controllable and
selective monofluorination reactions and definitely very danger-
ous.1,2 On the other hand, protocols for the introduction of
fluorine atom into organic molecules rely upon dozens of
different reagents;1,3 the most successful one is a new class of
electrophilic fluorinating reagents with the general structure of
R2N-F or R3N+-F.1,3,4 In this area, the development of the
reagent Selectfluor 1 (1-chloromethyl-4-fluoro-1,4-diazonia-
bicyclo[2.2.2]octane bis(tetrafluoroborate), also called F-TEDA-
* To whom correspondence should be addressed. Tel: 86-21-549-25147.
Fax: 86-21-641-67510.
† Zhejiang University.
‡ Chinese Academy of Sciences.
(1) Kirsch, P. Modern Fluoroorganic Chemistry, 1st ed.; Wiley-VCH:
Weinheim, 2004.
(2) (a) Rozen, S. Acc. Chem. Res. 1996, 29, 243. (b) Rozen, S. Acc.
Chem. Res. 1988, 21, 307.
(3) (a) Middleton, W. J. J. Org. Chem. 1975, 40, 574. (b) Barton, D. H.
R.; Godinho, L. S.; Hesse, R. H.; Pechet, M. M. Chem. Commun. 1968,
804. (c) Schack, C. J. K.; Christe, O. Inorg. Chem. 1979, 18, 2619. (d)
Tius, M. A. Tetrahedron 1995, 51, 6605. (e) Schmutzler, R. Angew. Chem.,
Int. Ed. 1968, 7, 440. (f) Rozen, S. Chem. ReV. 1996, 96, 1717.
10.1021/jo702409y CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/23/2007
772
J. Org. Chem. 2008, 73, 772-774