SCHEME 1. Carbonylative Cross Coupling with Imines
Palladium-Catalyzed Carbonylative
Cross-Coupling with Imines: A Multicomponent
Synthesis of Imidazolones
Ali R. Siamaki, Daniel A. Black, and Bruce A. Arndtsen*
Department of Chemistry, McGill UniVersity, 801 Sherbrooke
Street West, Montreal, Quebec, H3A 2K6, Canada
ReceiVed August 27, 2007
substrates for imidazole synthesis.2 A variety of methods have
been developed to generate and functionalize these heterocycles.
These include the condensation of substituted ureas with
carbonyl compounds,3 the coupling of â-amino carbonyl
reagents with isocyanates,4 intramolecular iminium salt cycliza-
tions,5 as well as more recent metal-catalyzed methods,6-8 such
the rhodium catalyzed N-H insertion of primary ureas with
diazo carbonyl compounds,2a,6 or the ruthenium-catalyzed
reaction of substituted ureas with vicinal diols.7,8
In principle, an attractive approach to imidazolones would
be to assemble their core structure directly from multiple,
available building blocks. Transition metal catalysis can be a
powerful tool in developing such transformations, by activating
what are often unreactive substrates toward coupling via metal-
based reactions.9 Toward this end, we have recently reported
that imines can undergo a palladium-catalyzed cross-coupling-
type reaction with organostannanes by the addition of acid
chlorides or chloroformates, to generate R-substituted amides
(or carbamates).10 In addition, preliminary studies showed this
reaction could proceed in concert with carbon monoxide
insertion, allowing the synthesis of one example of a ketocar-
bamate (Scheme 1). Considering that ketoamides are known to
behave as precursors to imidazoles,11 we became intrigued with
The palladium-catalyzed coupling of imines, chloroformates,
organotin reagents, and carbon monoxide leads to the one-
pot formation of ketocarbamates in good yields. These
products can further be converted to highly substituted
imidazolones via a cyclocondensation reaction. Overall, this
methodology provides an alternative approach to imidazo-
lones from five simple and readily available building blocks
via a one-pot, multicomponent process.
Imidazolones are found in a range of biologically active
compounds, including anti-inflammatory,1a, anticancer,1b and
cardioactive agents,1c angiotensin II receptor antagonists,1d and
others.1e-h In addition, 2-imidazolones can serve as potential
(1) (a) Sheppeck, J. E., II; Glimore, J. L.; Tebben, A.; Xue, C.-B.;
Liu, R.-Q.; Decicco, C. P.; Duan, J. J. W. Bioorg. Med. Chem. Lett.
2007, 17, 2769-2774. (b) Lai, Z.; Yang. T.; Kim, Y. B.; Sielecki,
T. M.; Diamond, M. A.; Strack, P.; Rolfe, M.; Caligiuri, M.; Benfield,
P. A.; Auger, K. R.; Copleland, R. A. PNAS 2002, 99, 14734-14739.
(c) Schnettler, R. A.; Dage, R. C.; Grisar, J. M. J. Med. Chem. 1982,
25, 1477-1481. (d) Bernhart, C. A.; Perreaut, P. M.; Ferrari, B. P.;
Muneaux, Y. A.; Assens, J.-L. A.; Clement, J.; Haudricourt, F.;
Muneaux, C. F.; Taillades, J. E.; Vignal, M.-A.; Gougat, J.; Guiraudou, P.
R.; Lacour, C. A.; Roccon, A.; Cazaubon, C. F.; Breliere, J.-C.;
Le Fur, G.; Nisato, D. J. Med. Chem. 1993, 36, 3371-3380. (e)
Naylor, E. M.; Parmee, E. R.; Colandrea, V. J.; Perkins, L.; Brockunier,
L.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F., Jr.; Deng, L.;
Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Strader, C.
D.; Tota, L.; Wang, P.-R.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E.
Bioorg. Med. Chem. Lett. 1999, 9, 755-758. (f) Reitz, D. B.; Garland, D.
J.; Norton, M. B.; Collins, J. T.; Reinhard, E. J.; Manning, R. E.; Olins, G.
M.; Chen, S. T.; Palomo, M. A.; McMahon, E. G. Bioorg. Med. Chem.
Lett. 1993, 3, 1055-1060. (g) Adres, J. I.; et al. Bioorg. Med. Chem. Lett.
2002, 12, 653-658. (h) Carling, R. W.; Moore, K. W.; Moyes, C. R.; Jones,
E. A.; Bonner, K.; Emms, F.; Marwood, R.; Patel, S.; Patel, S.; Fletcher,
A. E.; Beer, M.; Sohal, B.; Pike, A.; Leeson, P. D. J. Med. Chem. 1999,
42, 2706-2715.
(3) For example: (a) Butler, A. R.; Hussain, I. J. Chem. Soc., Perkin 2
1981, 310-316. (b) Patek, M.; Weichsel, A. S.; Drake, B.; Smrcina, M.
Synlett 2005, 8, 1322-1324.
(4) For example: Duschinsky, R.; Dolan, L. A. J. Am. Chem. Soc. 1946,
68, 2350-2355.
(5) (a) Pesquet, A.; Da¨ıch, A.; van Hijtfe, L. J. Org. Chem. 2006, 71,
5303-5311. (b) Wendeborn, S.; Winkler, T.; Foisy, I. Tetrahedron Lett.
2000, 41, 6387-6391. (c) Speckamp, W. N.; Hiemstra, H. Tetrahedron
1985, 41, 4367-4416. (d) Cheng, J.-F.; Kaiho, C.; Chen, M.; Arrhenius,
T. Tetrahedron Lett. 2002, 43, 4571-4573.
(6) Lee, S.-H.; Clapham, B.; Koch, G.; Zimmermann, J. Org. Lett. 2003,
5, 511-514.
(7) Kondo, T.; Kotachi, S.; Watanabe, Y. J. Chem. Soc., Chem. Commun.
1992, 1318-1319.
(8) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129,
7496-7497.
(9) Representative examples: (a) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto,
Y. J. Am. Chem. Soc. 2003, 125, 7786-7787. (b) Cao, C.; Shi, Y.; Odom,
A. L. J. Am. Chem. Soc. 2003, 125, 2880-2881. (c) Dhawan, R.; Arndtsen,
B. A. J. Am. Chem. Soc. 2004, 126, 468-469. (d) Siamaki, A. R.; Arndtsen,
B. A. J. Am. Chem. Soc. 2006, 128, 6050-6051. (e) Trost, B. M.; Pinkerton,
A. B. J. Am. Chem. Soc. 2000, 122, 8081-8082. (f) Montgomery, J. Acc.
Chem. Res. 2000, 33, 467-473. (g) Wie, C.; Li, Z.; Li, C.-J. Synlett 2004,
1472-1483.
(2) (a) Lee, S.-H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.;
Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829-8835. (b)
Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss, G.
A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M.-T.; Chen, J.; Shen, C.-P.; Stribling,
D. S.; Shearman, L. P.; Strack, A. M.; Van der Ploeg, L. H. T. Bioorg.
Med. Chem. Lett. 2005, 15, 1441-1446.
(10) Davis, J. L.; Dhawan, R.; Arndtsen, B. A. Angew. Chem., Int. Ed
2004, 43, 590-594.
10.1021/jo701875b CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/29/2007
J. Org. Chem. 2008, 73, 1135-1138
1135