Communication
ChemComm
maleimide–thiol conjugates are used as degradable systems (e.g.,
synthesis of hydrogels).35
We gratefully acknowledge the EPSRC (CASE Award with LifeArc,
173621) for funding C. B., and the Leverhulme Trust (RPG-2017-288,
176274) for funding R. J. S. A. M. would like to acknowledge the
Ramsay Memorial trust for provision of a Ramsay Fellowship.
F. J. and P. S. would like to thank the Wellcome Trust for funding.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 O. Boutureira and G. J. L. Bernardes, Chem. Rev., 2015, 115, 2174–2195.
2 C. D. Spicer and B. G. Davis, Nat. Commun., 2014, 5, 1–14.
3 S. Sechi and B. T. Chait, Anal. Chem., 1998, 70, 5150–5158.
4 Y. Kim, S. O. Ho, N. R. Gassman, Y. Korlann, E. V. Landorf,
F. R. Collart and S. Weiss, Bioconjugate Chem., 2008, 19, 786–791.
5 O. Koniev and A. Wagner, Chem. Soc. Rev., 2015, 44, 5495–5551.
6 V. Chudasama, A. Maruani and S. Caddick, Nat. Chem., 2016, 8, 114–119.
7 A. Beck, L. Goetsch, C. Dumontet and N. Corvaia, Nat. Rev. Drug
Discovery, 2017, 16, 315–337.
8 A. G. Polson, et al., Blood, 2007, 110, 616–623.
9 S. M. Ansell, Blood, 2014, 124, 3197–3200.
10 J. D. Bargh, A. Isidro-Llobet, J. S. Parker and D. R. Spring, Chem. Soc.
Rev., 2019, 48, 4361–4374.
Fig. 4 Incubation of Fab–PD conjugate 17 (20 mM) with (a) HSA 5 (20 mM) for
48 h. (b) Incubation of Fab–maleimide species 19 (20 mM) with HSA 5 (20 mM) for
48 h. (c) Incubation of Fab–PD conjugate 17 (20 mM) at pH 6.5 for 7 days.
´
11 R. Gebleux, M. Stringhini, R. Casanova, A. Soltermann and D. Neri,
Int. J. Cancer, 2017, 140, 1670–1679.
12 G. J. L. Bernardes, G. Casi, S. Tru¨ssel, I. Hartmann, K. Schwager,
J. Scheuermann and D. Neri, Angew. Chem., Int. Ed., 2012, 51, 941–944.
for 7 days. Despite acidic conditions slowing down the rate of Michael
deconjugation, the majority of the PD was still released from the
´
13 A. Dal Corso, R. Gebleux, P. Murer, A. Soltermann and D. Neri,
J. Controlled Release, 2017, 264, 211–218.
´
conjugate (Fig. 4c). We would therefore expect that PD cleavage would 14 A. Dal Corso, S. Cazzamalli, R. Gebleux, M. Mattarella and D. Neri,
Bioconjugate Chem., 2017, 28, 1826–1833.
15 T. H. Pillow and J. A. Flygare, et al., Chem. Sci., 2017, 8, 366–370.
16 M. Danial and A. Postma, Ther. Delivery, 2017, 8, 359–362.
occur in the extracellular environment (following antigen binding)
resulting in a high local concentration of PD-linked payload that may
then diffuse into target cells. By using PDs in conjunction with linkers 17 A. D. Baldwin and K. L. Kiick, Bioconjugate Chem., 2011, 22, 1946–1953.
18 H. Wu, P. J. Levalley, T. Luo, A. M. Kloxin and K. L. Kiick, Bioconju-
gate Chem., 2018, 29, 3595–3605.
19 B. Q. Shen, et al., Nat. Biotechnol., 2012, 30, 184–189.
designed for intracellular triggered release (e.g., Val–Cit, hindered
disulfides), efficient delivery of cargo using non-internalising targeting
proteins could be achieved. Furthermore, combining a predictable 20 A. Maruani, M. E. B. Smith, E. Miranda, K. A. Chester, V. Chudasama and
S. Caddick, Nat. Commun., 2015, 6, 6645–6655.
21 C. Bahou, D. A. Richards, A. Maruani, E. A. Love, F. Javaid, S. Caddick,
time-dependent release mechanism in a tumour environment with a
high tolerance towards HSA may provide a useful cleavage mechanism,
J. R. Baker and V. Chudasama, Org. Biomol. Chem., 2018, 16, 1359–1366.
such that a PD payload could be slowly released in a target area (e.g., a 22 C. Bahou, E. A. Love, S. Leonard, R. J. Spears, A. Maruani, K. Armour,
J. R. Baker and V. Chudasama, Bioconjugate Chem., 2019, 30, 1048–1054.
23 (a) V. Chudasama, M. E. B. Smith, F. F. Schumacher, D. Papaioannou,
tumour microenvironment) without being carried away by blood thiols.
In this work, we have for the first time explored the use of the
G. Waksman, J. R. Baker and S. Caddick, Chem. Commun., 2011, 47, 8781;
pyridazinedione motif in the context of dynamic reversible cysteine
modification. When comparing this motif with other Michael
acceptors used in the field (e.g., highly thiol-reactive maleimides
and cyanoacrylates) we observe slow release of PD over time, the
absence of any competing hydrolysis and a lack of reactivity between
PDs and blood thiols (particularly with blood thiol serum albumin).
The PD scaffold that we report on could have a unique place in the
extracellular cleavable linker space by providing an opportunity for
consistent slow release of cargo, which can then diffuse into cells
(b) A. Maruani, S. Alom, P. Canavelli, M. T. W. Lee, R. E. Morgan,
V. Chudasama and S. Caddick, Chem. Commun., 2015, 51, 5279–5282.
24 I. M. Serafimova, M. A. Pufall, S. Krishnan, K. Duda, M. S. Cohen,
¨
R. L. Maglathlin, J. M. McFarland, R. M. Miller, M. Frodin and
J. Taunton, Nat. Chem. Biol., 2012, 8, 471–476.
25 M. F. Schlecht, Molecular Modeling on the PC, Wiley-VCH, New York, 1998.
26 K. E. Gilbert, PCMODEL, version 8.5, SerenaSoftware, Bloomington.
27 C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron,
1980, 36, 2783–2792.
28 P. Moody, M. E. B. Smith, C. P. Ryan, V. Chudasama, J. R. Baker,
J. Molloy and S. Caddick, ChemBioChem, 2012, 13, 39–41.
29 S. Matsui and H. Aida, J. Chem. Soc., Perkin Trans. 2, 1978, 1277.
and undergo intracellular specific cleavage, as a novel alternative to 30 J. M. J. M. Ravasco, H. Faustino, A. Trindade and P. M. P. Gois,
Chem. – Eur. J., 2019, 25, 43–59.
31 A. D. Baldwin and K. L. Kiick, Bioconjugate Chem., 2011, 22, 1946–1953.
triggered cleavable linkers applied in the same context. Through
rational bioconjugate design, a targeting protein, with a suitable
´
32 R. Gebleux, S. Wulhfard, G. Casi and D. Neri, Mol. Cancer Ther.,
blood half-life, modified with PD linkers could provide a slow release
of payload without concern over cleavage in off-target areas. We also
believe the time-dependent degradation of pyridazinedione–thiol
2015, 14, 2606–2612.
33 G. J. L. Bernardes, G. Casi, S. Tru¨ssel, I. Hartmann, K. Schwager,
J. Scheuermann and D. Neri, Angew. Chem., Int. Ed., 2012, 51, 941–944.
34 G. Hao, Z. P. Xu and L. Li, RSC Adv., 2018, 8, 22182–22192.
motif could have a variety of ex vivo applications wherein 35 A. D. Baldwin and K. L. Kiick, Polym. Chem., 2013, 4, 133–143.
14832 | Chem. Commun., 2019, 55, 14829--14832
This journal is ©The Royal Society of Chemistry 2019