3
reactions of 2a with phenol, potassium iodide, or hydroxylamine
could smoothly synthesize Z-3-phenoxy-3-phenylacrylonitrile 3a
[13], Z-3-iodo-3-phenylacrylonitrile 4a [14] and 3-
phenylisoxazol-5-amine 5a [15]. These structures were
confirmed by comparison the analytical data with literatures.
These products are useful organic synthetic intermediates.
In summary, copper-catalyzed direct cyanation between
terminal alkynes and benzoyl cyanide to form propiolonitrile
under mild reaction conditions was developed. The salient
features of this protocol include use of less toxic, stable and easy
to handle cyanating agent, high yield and mild condition. This
method provides an efficient way to prepare propiolonitriles,
which are useful intermediates for many important organic
chemicals.
O
Cu(NO3)2
3H2O (0.38 g)
Air, DMF (30 mL), 50 oC, 20 h
CN
CN
H
+
Acknowledgements
2a
1a
(0.86 g, 68%)
(1.02 g)
(1.31 g)
The authors thank the National Natural Science Foundation of
China (21462038) for the financial support of this work.
Scheme 2 Gram-scale synthesis of 2a
Appendix A. Supplementary data
Supplementary data to this article can be found online at
References
OH
O
CN
3a
Na2CO3, DMF
1.
2.
O. Koniev, G. Leriche, M. Nothisen, J. Remy, J. Strub, C.
Schaeffer, A.V. Dorsselaer, R. Baati, A. Wagner, Bioconjugate
Chem. 25 (2014) 202−206.
S. Kolodych, O. Koniev, Z. Baatarkhuu, J. Bonnefoy, F. Debaene,
S. Cianférani, V.D. Dorsselaer, A. Wagner, Bioconjugate Chem.
26 (2015) 197−200.
P.K. Sharma, S. Ram, N. Chandaka, Adv. Synth. Catal. 358
(2016) 894−899.
(a) Z. Rappoport, The Chemistry of the Cyano Group, Interscience
Publishers, London, 1970; (b) R.C. Larock, Comprehensive
KI
CN
HOAc, 120 o
C
I
CN
2a
4a
O
N
NH2OH
HCl
3.
4.
NH2
NaOH, EtOH
5a
Organic Transformations:
A Guide to Functional Group
Scheme 3 Transformations of propiolonitrile 2a
Preparations, VCH, Weinheim, 1989; (c) Z. Cheng, W. Li, F. He,
J. Zhou, X. Zhu, Bioorg. Med. Chem. 15 (2007) 1533−1538; (d)
N. Heard, J. Turner, J. Org. Chem. 60 (1995) 4302−4304.
F. Shu, Q. Zheng, W. Dong, Z. Peng, D. An, Can. J. Chem. 95
(2017) 144−148.
(a) Y. Li, D. Shi, P. Zhu, H. Jin, S. Li, F. Mao, W. Shi,
Tetrahedron Lett. 56 (2015) 390−392; (b) F.T. Luo, R.T. Wang,
Tetrahedron Lett. 34 (1993) 5911−5914; (c) P. Liu, R.J. Clark, L.
Zhu, J. Org. Chem. 83 (2018) 5092−5103.
K. Okamoto, M. Watanabe, N. Sakata, M. Murai, K. Ohe, Org.
Lett. 15 (2013) 5810−5813.
G. Rong, J. Mao, Y. Zheng, R. Yao, X. Xu, Chem. Commun. 51
(2015) 13822−13825.
5.
6.
On the basis of the above experimental results, a plausible
mechanism is proposed for the synthesis of 2a by reaction of 1a
with benzoyl cyanide (Scheme 4). Initially, the reaction of 1a
with Cu(NO3)2 forms (phenylethynyl)copper nitrate (A) [8].
Meantime, the reaction of benzoyl cyanide with water from
Cu(NO3)2.3H2O produces HCN in situ [16]. Then the ligands
exchange between A and HCN gives (phenylethynyl)copper
cyanide (B) as an intermediate [17]. B can easily afford 2a as a
final product by reductive elimination. Meanwhile Cu(0)
7.
8.
9.
T.V. Hughes, M.P. Cava, J. Org. Chem. 64 (1999) 313−315.
10. H. Wang, P. Mi, W. Zhao, R. Kumar, X. Bi, Org. Lett. 19 (2017)
5613−5616.
produced can
be
readily
oxidized by oxygen
from
air to Cu(NO3)2 in the presence of HNO3 produced in the system.
11. Z. Li, S. Shi, J. Yang, Synlett 15 (2006) 2495−2497.
12. (a) T. Watahiki, S. Ohba, T. Oriyama, Org. Lett. 5 (2003)
2679−2681; (b) A. Baeza, C. Najera, J. M. Sansano, J. M. Saa,
Tetrahedron: Asymmetry 16 (2005) 2385−2389; (c) L. Wang, L.
Pan, Q. Chen, M. He, Chin. J. Chem. 32 (2014) 1221−1224; (d)
H. Song, X. Liu, C. Wang, J. Qiao, W. Chu, Z. Sun, Asian J. Org.
Chem. 6 (2017) 1693−1698.
O
CN
H2O
PhCO2H
13. W. Zhou, Y. Zhang, P. Li, L. Wang, Org. Biomol. Chem. 10
(2012) 7184−7196.
HCN
14. Z. Guan, Z. Liu, W. Shi, H. Chen, Tetrahedron Lett. 58 (2017)
3602−3606.
Ar
CuNO3
Ar
Cu CN
A
16. (a) J. Jin, Q. Wen, P. Lu, Y. Wang, Chem. Commun. 48 (2012)
9933−9935; (b) L. Zhang, X. Gu, P. Lu, Y. Wang, Tetrahedron 72
(2016) 2359−2363; (c) D. Xie, Z. Li, Tetrahedron 74 (2018)
1135−1143; (d) X. Hu, H. Li, J. Yang, Z. Li, Synlett 25 (2014)
1786−1790; (e) Z. Li, Y. Ma, J.Xu, J. Shi, H. Cai, Tetrahedron
Lett. 51 (2010) 3922−3926.
B
Ar
CN
HNO3
Ar
H
2a
1a
Cu (NO3)2
17. A.B. Pawar, S. Chang, Chem. Commun. 50 (2014) 448−450.
Cu
air (O2)
Scheme 4 Proposed mechanism for 2a.
agent
Air as an oxidant
Mild condition
Up to 85% yield
Highlight
Less toxic, stable and easy to handle cyanating