Journal of the American Chemical Society
Page 6 of 8
the catalytic cycle and its formation is the slowest step that reꢀ
quires heating. The sulfur ylide formation, boron “ate” complex
formation, 1,2ꢀmetallate shift and protodeboronation are all facile
steps that occur smoothly at room temperature. HRMS of the
reaction mixture also suggests the concentration of the sulfonium
is very low (see SI).
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work is financially supported by the National Natural Sciꢀ
ence Foundation of China (21702008 for Z. H. and 21572004 for
Y. H.), Guangdong Province Special Branch Program
(2014TX01R111), and Shenzhen Basic Research Program
(JCYJ20160226105602871).
The sulfur ylide of compound 12 can be obtained by using
LiHMDS ꢀ20 ºC in toluene, which appears as a bright yellow
solution. Isolation of the pure ylide was unsuccessful and selfꢀ
dimerization to stilbene was the major decomposition pathway.
Direct transfer of the crude ylide solution into a suspension of 2a
in toluene led to immediate color quenching. The crossꢀcoupling
product 3aa slowly formed in 55% yield after 24 hours at room
temperature. (Figure 4d, entry 1, 2). Stilbene was formed in 14%
yield based on compound 12. When boroxine was used, 3aa was
obtained in 27% yield. We propose that the reduced yield was due
to the increased stereo effect of boroxine. These results suggest
the sulfide ylide is likely the key intermediate, and the rapid color
fading indicates the formation of the “ate” complex is very fast at
room temperature. During our substrate scope survey (Table 1),
no stilbene formation was observed, indicating the sulfur ylide
was formed in low concentration. This observation is consistent
with our proposal that the sulfonium salt formation is the rateꢀ
limiting step for this reaction. The final protodeboronation has
been reported to be facile for diarylmethyl boronic acids.13
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1). (a) Wu, X.ꢀF.; Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2010, 49, 9047. (b) Suzuki, A. Angew. Chem., Int. Ed.
2011, 50, 6722.
(2). Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum,
G. A. J. Med. Chem. 2016, 59, 4385.
(3). (a) Hartwig, J. F. Organotransition Metal Chemistry: From Bond-
ing to Catalysis (University Science Books, Sausalito, CA, 2010). (b)
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Han, F.ꢀS. Chem.
Soc. Rev. 2013, 42, 5270.
(4). Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am.
Chem. Soc. 2006, 128, 6829.
(5). (a) Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674.
(b) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937. (c)
Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(6). (a) Rondinini, S.; Mussini, P. R.; Muttini, P.; Sello, G. Electrochim.
Acta. 2001, 46, 3245. (b) Hu, X. Chem. Sci. 2011, 2, 1867.
(7). (a) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
3910. (b) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am.
Chem. Soc. 2002, 124, 13662.
Employing electron deficient boroxines resulted in low converꢀ
sion at room temperature. Moderate yield (22%) of 3ax was obꢀ
tained at 60 ºC (Figure 4d, entry 3, 4), indicating higher activaꢀ
tion energy is required to promote the migration of electronꢀ
deficient aryl groups compared to their electronꢀrich counterparts.
Sulfur ylide generated from tetrahydrothiophene (cat. 1) gave
very low yield of the crossꢀcoupling product 3aa at room temꢀ
perature (Figure 4e). Although cat 1 is a better nucleophile than
cat. 20. It is a poor leaving group and might disfavor the 1,2ꢀ
metallate shift. At elevated temperature, decomposition of cat. 1,
involving multiple αꢀHs of the sulfide, is rapid. In comparison, the
reduced nucleophilicity of cat. 20 is compensated by facilitating
the 1,2ꢀmetallate shift as a better leaving group. The lack of αꢀHs
of this sulfide also improves catalyst stability.
(8). Sun, C.ꢀL.; Shi, Z.ꢀJ. Chem. Rev. 2014, 114, 9219.
(9). For selected recent review see: (a) Matteson, D. S. Chem. Rev. 1989,
89, 1535. (b) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47,
3174.
(10) For selected example for 1,2ꢀmetallate shift to sp3 carbon, see: (a)
Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2007, 46, 7491. (b) Stymiest, J. L.; Bagutski, V.; French,
R. M.; Aggarwal, V. K. Nature 2008, 456, 778. (c) Schmidt, F.; Keller, F.;
Vedrenne, E.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 1149. (d)
Althaus, M.; Mahmood, A.; Suárez, J. R.; Thomas, S. P.; Aggarwal, V. K.
J. Am. Chem. Soc. 2010, 132, 4025. (e) Nave, S.; Sonawane, R. P.; Elford,
T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096. (f) Partridge,
B. M.; ChaussetꢀBoissarie, L.; Burns, M.; Pulis, A. P.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2012, 51, 11795. (g) Pulis, A. P.; Blair, D. J.;
Torres, E.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135, 16054. (h)
Rasappan, R.; Aggarwal, V. K. Nat. Chem. 2014, 6, 810. (i) Burns, M.;
Essafi, S.; Bame, J. R.; Bull, S. P.; Webster, M. P.; Balieu, S.; Dale, J. W.;
Butts, C. P.; Harvey, J. N.; Aggarwal, V. K. Nature 2014, 513, 183. (j)
Watson, C. G.; Balanta, A.; Elford, T. G.; Essafi, S.; Harvey, J. N.; Agꢀ
garwal, V. K. J. Am. Chem. Soc. 2014, 136, 17370. (k) Balieu, S.; Hallett,
G. E.; Burns, M.; Bootwicha, T.; Studley, J.; Aggarwal, V. K. J. Am.Chem.
Soc. 2015, 137, 4398. (l) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.;
Szymaniak, A. A.; Chierchia, M. P.; Morken J. P. Science 2016, 351, 70.
For selected example for 1,2ꢀmetallate shift to sp2 carbon, see: (m) Bonet,
A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal V. K. Nat. Chem.
2014, 6, 584. (n) Llaveria, J.; Leonori, D.; Aggarwal, V. K. J. Am. Chem.
Soc. 2015, 137, 10958. (o) Wang, Y.; Noble, A.; Myers, E. L.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2016, 55, 4270. (p) Odachowski, M.; Bonet,
A.; Essafi, S.; ContiꢀRamsden, P.; Harvey, J. N.; Leonori, D.; Aggarwal,
V. K. J. Am. Chem. Soc. 2016, 138, 9521. (q) Armstrong, R. J.; Garcíaꢀ
Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56,
786.
CONCLUSION
In summary, after nearly half a century of domination of transiꢀ
tion metals in the Suzuki reaction, an alternative transitionꢀmetalꢀ
free strategy is developed for C(sp3)ꢀC(sp2) crossꢀcoupling reacꢀ
tions between benzyl chlorides and arylboronic acids. The excluꢀ
sive chemoselectivity of alkyl over aryl halides is complementary
to transitionꢀmetalꢀcatalyzed processes. The reaction proceeds
through a novel catalytic cycle: sulfonium salt, sulfur ylide, boron
“ate” complex, 1,2ꢀmetallate shift and protodeboronation. This
approach eliminates possible C(sp2)ꢀC(sp2) coupling reactions for
substrates with multiple aryl halide substituents and enables a
modular synthesis of unsymmetrical diarylmethanes using a seꢀ
quential crossꢀcoupling technique. We anticipate this new strategy
will significantly widen the paradigm for crossꢀcoupling reactions.
Supporting Information
Experimental procedures, analytical and spectroscopic data for
new compounds, copies of NMR spectra. This material is availaꢀ
(11) Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1956, 78, 5694.
(12). Hooz, J.; Linke, S. J. Am. Chem. Soc. 1968, 90, 5936.
(13) Barluenga, J.; TomásꢀGamasa, M.; Aznar, F.; Valdés, C. Nat.
Chem. 2009, 1, 494.
(14). (a) Aggarwal, V. K.; Fang, G. Y.; Schmidt, A. T. J. Am. Chem.
Soc. 2005, 127, 1642. (b) Robiette, R.; Fang, G. Y.; Harvey, J. N.; Agꢀ
garwal, V. K. Chem. Commun. 2006, 741. (c) Fang, G. Y.; Wallner, O. A.;
Blasio, N. D.; Ginesta, X.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem.
Soc. 2007, 129, 14632. (d) Fang, G. Y.; Aggarwal, V. K. Angew. Chem.,
AUTHOR INFORMATION
Corresponding Author
ACS Paragon Plus Environment