Organometallics 2008, 27, 451–454
451
Notes
A Stable Iridabenzene Formed from an Iridacyclopentadiene Where
the Additional Ring-Carbon Atom Is Derived from a Thiocarbonyl
Ligand
George R. Clark, Paul M. Johns, Warren R. Roper,* and L. James Wright*
Department of Chemistry, The UniVersity of Auckland, PriVate Bag 92019, Auckland, New Zealand
ReceiVed September 25, 2007
complexes of iridium are well-known8 and the propensity of
the thiocarbonyl ligand to participate in migratory insertion
reactions is well-established,9 it is perhaps surprising that a
similar approach has not been reported for iridabenzenes. Herein
we describe that an iridacyclopentadiene incorporating a thio-
carbonyl ligand can be induced, in the presence of methyl
triflate, to insert the carbon atom of the CS ligand to form an
iridabenzene bearing only one ring substituent. The lack of
substituents allows examination of electrophilic substitution
reactions, and it is demonstrated that this iridabenzene undergoes
facile ring bromination in the position para to the SMe
substituent.
Summary: The cationic thiocarbonyl complex [Ir(CS)(MeCN)-
(PPh3)2][CF3SO3] (1) reacts sequentially with ethyne and LiCl
to giVe the iridacyclopentadiene Ir[C4H4]Cl(CS)(PPh3)2 (2),
which in turn when heated with methyl triflate followed by
addition of LiCl produces the stable, purple, iridabenzene
Ir[C5H4(SMe-1)]Cl2(PPh3)2 (3). This iridabenzene undergoes
electrophilic aromatic bromination in the position para to the
SMe substituent to form Ir[C5H3(SMe-1)(Br-4)]Br2(PPh3)2 (4).
Introduction
Iridabenzenes are now well-established as a distinct class of
compounds,1 having been synthesized by four main approaches,
involving (a) deprotonation of an iridacyclohexadiene (formed
from initial introduction of a pentadienide ligand followed by
ring closure from a C-H activation),2 (b) rearrangement of a
cyclopropenylvinyl ligand,3 (c) formal insertion of a either a
vinylidene or carbene ligand into an iridacyclopentadiene
followed by aromatization,4 and (d) oxidative ring contraction
of an iridacycloheptatriene.5 These routes provide access to both
five-coordinate and six-coordinate examples of iridabenzenes.
Computational studies show that most metallabenzenes are
unstable with respect to rearrangement to metal cyclopentadienyl
complexes; however, of the model systems studied, six-
coordinate iridium examples alone were more stable than the
rearranged Cp complexes.6
Results and Discussion
Following the precedent established for the formation of the
iridacyclopentadiene [Ir[C4H4](CO)(MeCN)(PPh3)2]+10 from
[Ir(CO)(MeCN)(PPh3)2]+11 and ethyne, we treated the thiocar-
bonyl complex analogue [Ir(CS)(MeCN)(PPh3)2][CF3SO3] (1)
(derived from IrCl(CS)(PPh3)2 12 and AgCF3SO3; characterizing
data for 1 as well as for 2–4 are given in the Experimental
Section) with ethyne, followed by LiCl, to form the neutral
thiocarbonyl iridacyclopentadiene Ir[C4H4]Cl(CS)(PPh3)2 (2)
(see Scheme 1).
Complex 2 has been thoroughly characterized, including by
a crystal structure determination (see below). In the 13C NMR
spectrum of 2 the two iridium-bound carbon atoms of the
iridacyclopentadiene ring appear as triplets (due to coupling with
The first metallabenzene was assembled from an osmium
thiocarbonyl complex and ethyne,7 and since thiocarbonyl
1
phosphorus) at 157.14 and 145.13 ppm, while in the H NMR
spectrum the protons attached to these carbon atoms are
* Corresponding authors. E-mail: lj.wright@auckland.ac.nz; w.roper@
auckland.ac.nz.
(8) (a) Yagupsky, M. P.; Wilkinson, G. J. Chem. Soc. A 1968, 2813.
(b) Kubota, M.; Carey, C. R. J. Organomet. Chem. 1970, 24, 491. (c)
Broadhurst, P. V. Polyhedron 1985, 4, 1801.
(1) (a) Bleeke, J. R. Chem. ReV. 2001, 101, 1205. (b) Landorf, C. W.;
Haley, M. M. Angew. Chem., Int. Ed. 2006, 45, 3914. (c) Wright, L. J.
J. Chem. Soc., Dalton Trans. 2006, 1821.
(9) (a) Collins, T. J.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1976,
1044. (b) Roper, W. R.; Town, K. G. J. Chem. Soc., Chem. Commun. 1977,
781. (c) Clark, G. R.; Collins, T. J.; Marsden, K.; Roper, W. R. J.
Organomet. Chem. 1978, 157, C23. (d) Rickard, C. E. F.; Roper, W. R.;
Salter, D. M.; Wright, L. J. Organometallics 1992, 11, 3931. (e) Irvine,
G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins,
E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem. ReV. 1998, 98,
2685.
(2) Bleeke, J. R.; Xie, Y.-F.; Peng, W.-J.; Chiang, M. J. Am. Chem.
Soc. 1989, 111, 4118.
(3) Gilbertson, R. D.; Weakley, T. J. R.; Haley, M. M. J. Am. Chem.
Soc. 1999, 121, 2597.
(4) (a) Chin, C. S.; Lee, H. Chem.-Eur. J. 2004, 10, 4518. (b) Álvarez,
E.; Paneque, M.; Poveda, M. L.; Rendón, N. Angew. Chem., Int. Ed. 2006,
45, 474.
(5) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendón, N.; Salazar,
V.; Oñate, E.; Mereiter, K. J. Am. Chem. Soc., 2003, 125, 9898.
(6) (a) Iron, M. A.; Martin, J. M. L.; van der Boom, M. E. J. Am. Chem.
Soc. 2003, 125, 13020. (b) Iron, M. A.; Lucassen, A. C. B.; Cohen, H.;
van der Boom, M. E.; Martin, J. M. L. J. Am. Chem. Soc. 2004, 126, 11699.
(7) Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem.
Commun. 1982, 811.
(10) Chin, C. S.; Park, Y.; Kim, J.; Lee, B. J. Chem. Soc., Chem.
Commun. 1995, 1495.
(11) Reed, C. A.; Roper, W. R. J. Chem. Soc., Dalton Trans. 1973,
1365.
(12) (a) Hill, A. F.; Wilton-Ely, J. D. E. T. Inorg. Synth. 2002, 33, 244.
(b) Lu, G.-L.; Roper, W. R.; Wright, L. J.; Clark, G. R. J. Organomet.
Chem. 2005, 690, 972.
10.1021/om700951j CCC: $40.75
2008 American Chemical Society
Publication on Web 01/17/2008