In summary, new sterically encumbered, unsaturated chiral and
achiral N-heterocyclic carbene catalysts polymerize rac-LA to form
highly isotactic PLA at low temperature, while meso-LA yields
heterotactic PLA. A proposed mechanism involving chain end
control explains these examples of stereoselective polymerization.
We gratefully acknowledge support from the NSF Center on
Polymeric Interfaces and Macromolecular Assemblies (CPIMA)
(NSF-DMR-0213618), and an NSF-GOALI Grant (NSF-CHE-
0313993).
Notes and references
1 R. E. Drumright, P. R. Gruber and D. E. Henton, Adv. Mater., 2000,
12, 1841.
2 O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, Chem. Rev.,
2004, 104, 6147 and references therein.
Fig. 2 Methine region of homonuclear decoupled 1H-NMR spectra of
poly(rac-LA) obtained at different polymerization temperatures using 3 as
catalyst (Table 1, entries 1 and 4).3a
3 (a) T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 1316;
(b) Z. Zhong, P. J. Dijkstra and J. Feijen, J. Am. Chem. Soc., 2003, 125,
11291; (c) M. T. Zell, B. E. Padden, A. J. Paterick, K. A. M. Thakur,
R. T. Kean, M. A. Hillmyer and E. J. Munson, Macromolecules, 2002,
35, 7700; (d) B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, J. Chem.
Soc., Dalton Trans., 2001, 15, 2215.
with the presence of chiral groups close to the active site, a chain
end control mechanism predominates. For rac-LA, both D- and
L-LA should be equally activated with stereoselective attack by the
terminal alkoxide of the last inserted monomer in the polymer
chain leading to isotactic enchainment (Scheme 2). The formation
of heterotactic-enriched PLA from meso-LA is also consistent with
a chain end control mechanism. In this case, the oxygen adjacent
to the last stereogenic center of the polymer chain end (either R or
S) preferentially attacks the activated monomer with the same
stereogenic configuration adjacent to it. Repeating these steps, a
heterotactic-enriched polymer chain can be achieved.
4 G. W. Coates, Chem. Rev., 2000, 100, 1223.
5 (a) B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt,
E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2001, 123,
3229; (b) P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White
and D. J. Williams, J. Am. Chem. Soc., 2004, 126, 2688; (c) N. Nomura,
R. Ishii, M. Akakura and K. Aoi, J. Am. Chem. Soc., 2002, 124,
5938.
6 M. Wisniewski, A. L. Borgne and M. Spassky, Macromol. Chem. Phys.,
1997, 198, 1227.
7 N. Spassky, M. Wiesnewski, C. Pluta and A. Le Borgne, Macromol.
Chem. Phys., 1996, 197, 2627.
8 C. P. Radano, G. L. Baker and M. R. Smith, J. Am. Chem. Soc., 2000,
122, 1552.
9 T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 1316.
10 (a) M. H. Chisholm, N. J. Patmore and Z. Zhou, Chem. Commun.,
2005, 127; (b) M. H. Chisholm, J. Gallucci and K. Phomphrai, Inorg.
Chem., 2002, 41, 2785.
11 T. R. Jensen, L. E. Breyfogle, M. A. Hillmyer and W. B. Tolman,
Chem. Commun., 2004, 2504.
12 G. W. Nyce, T. Glauser, E. F. Connor, A. Mock, R. M. Waymouth
and J. L. Hedrick, J. Am. Chem. Soc., 2003, 125, 3046.
13 (a) T. J. Seiders, D. W. Ward and R. H. Grubbs, Org. Lett., 2001, 3,
3225; (b) R. H. Grubbs, D. W. Ward, T. J. Seiders and S. D. Goldberg,
WO 20020837.
14 (a) S. Csihony, D. A. Culkin, A. C. Sentman, A. P. Dove,
R. M. Waymouth and J. L. Hedrick, J. Am. Chem. Soc., 2005, 127,
9079; (b) O. Coulembier, A. P. Dove, R. C. Pratt, A. C. Sentman,
D. A. Culkin, L. Mespouille, P. Dubois, R. M. Waymouth and
J. L. Hedrick, Angew. Chem., Int. Ed., 2005, 44, 4964.
15 (a) A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig,
J. R. Goerlich, W. J. Marshall and M. Unverzagt, Tetrahedron, 1999,
55, 14523; (b) L. Jafarpour, E. D. Stevens and S. P. Nolan, J. Organomet.
Chem., 2000, 606, 49.
16 G. Altenhoff, R. Goddard, C. W. Lehmann and F. Glorius, J. Am.
Chem. Soc., 2004, 126, 15195.
17 (a) T. Kano, K. Sasaki and K. Maruka, Org. Lett., 2005, 7, 1347; (b)
Y. Suzuk, K. Yamauchi, K. Muramatsu and M. Sato, Chem. Commun.,
2004, 2770.
18 Pi is the probability of forming a new isotactic dyad (assuming negligible
transesterification) and is determined from the methine region of the
homonuclear decoupled 1H NMR spectrum. It was calculated based on:
(a) J. E. Kasperczyk, Macromolecules, 1995, 28, 3937; (b) J. Coudane,
C. Ustariz-Peyret, G. Schwach and M. Vert, J. Polym. Sci., Part A:
Polym. Chem., 1997, 35, 1651.
Scheme 2 Proposed chain end control mechanisms for (top) rac-lactide
and (bottom) meso-lactide polymerizations.
19 T. M. Ovitt and G. W. Coates, J. Polym. Sci., Part A: Polym. Chem.,
2000, 38, 4686.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2881–2883 | 2883