2896
S.A. Patil et al. / Tetrahedron 65 (2009) 2889–2897
J¼8.8 Hz, 1H, Ar), 2.38 (s, 3H, H3C]N). 13C NMR (DMSO-d6,
d
/
with the hybrid B3LYP-DFT method under C1 symmetry, in which
the Becke three parameter exchange functional18 and the Lee–
Yang–Parr correlation functional19 were used. The LANL2DZ in-
ppm): 152.75, 151.83, 132.67, 130.53, 130.04, 128.37, 128.12, 126.95,
126.65, 125.91, 123.97, 123.40, 122.92, 121.56, 121.29, 119.92,
118.70, 118.49. HRMS: m/z¼333.0935 (Mþ). Anal. Calcd for 8: C,
68.45; H, 4.53; N, 12.60; S, 9.62. Found: C, 68.47; H, 4.68; N, 12.68;
S, 9.74.
cluding the double-z basis sets for the valence and outermost core
orbitals combined with pseudopotential were used for Pd,20 and 6-
31G(d) basis sets for the other atoms.
4.10. 2-(Benzothiazol-2-yl-hydrazonomethyl)-6-methoxy-4-
nitro-phenol (9)
Acknowledgements
We are grateful to the National Science Council of the R.O.C.
(Grant NSC 95-2113-M-005-015-MY3) for financial support. The CPU
time that was used to complete this project was mostly provided by
the National Center for High-Performance Computing (NCHC).
The preparation of 9 was carried out by refluxing a solution of
0.005 mol of 3-methoxy-5-nitrosalicylaldehyde (0.985 g) in etha-
nol (10 mL) and with a solution of 0.005 mol of 2-hydrazino-
benzothiazole (0.826 g) in ethanol (10 mL) for 4–5 h. The reaction
mixture was then allowed to cool to room temperature at over-
night. The resulting dark yellow colored precipitate was filtered and
washed 2–3 times with hot ethanol and dried in vacuo. Yield: 1.68 g
Supplementary data
Tables for the Suzuki–Miyaura coupling reactions using
Pd(OAc)2/L (L¼2–5, 7–9) at various solvents and temperatures;
tables for the parameters of the optimized structures TS4a and
TS4b; X-ray crystallographic files (CIFs) for 1 and 10; ORTEP
drawings of 1 and 10 (Figs. S1 and S2). Crystallographic data for the
structural analysis have been deposited with the Cambridge Crys-
tallographic Data Center, CCDC nos. 683204 and 685915 for 1 and
10. Copies of this information may be obtained free of charge from
the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax:
this article can be found in the online version, at doi:10.1016/
(97.65%). 1H NMR (DMSO-d6,
d/ppm): 8.47 (s, 1H, HC]N), 8.25 (d,
J¼2.8 Hz, 1H, Bt), 7.75 (d, J¼2.8 Hz, 3H, Ar and Bt), 7.30 (t, J¼7.6 Hz,
1H, Bt), 7.11 (t, J¼7.6 Hz, 1H, Bt). 13C NMR (DMSO-d6,
d/ppm):
166.94, 151.82, 148.00, 139.68, 126.11, 121.73, 120.00, 106.55, 56.41.
HRMS: m/z¼344.0577 (Mþ). Anal. Calcd for 9: C, 52.32; H, 3.51; N,
16.27; S, 9.31. Found: C, 52.41; H, 4.25; N, 16.42; S, 9.41.
4.11. General procedure for the palladium-catalyzed Suzuki
cross-coupling reactions
The five reactants, aryl bromide (1.0 mmol), boronic acid
(1.0 mmol), ligand L (L¼1–9) (1.0 mol %), Pd(OAc)2 (1.0 mol %), and
K3PO4 (3.0 mmol), were placed in an oven dried Schlenk flask. The
flask was evacuated and backfilled with nitrogen. To the mixture
then toluene/THF (1.0 mL) was added and stirred at required tem-
perature with designated hours. The mixture was then allowed to
cool to room temperature and quenched by adding ether (3.0 mL)
and water (2.0 mL). Ether layer is separated from water layer
through separatory funnel and dried with anhydrous magnesium
sulfate. The dried ether layer was concentrated in vacuo and puri-
fied by column chromatography using hexane and ethyl acetate as
eluting solvent.
References and notes
1. (a) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133; (b) Phan, N. T. S.; Van Der
Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609; (c) Corbet, J.-P.; Mignani,
G. Chem. Rev. 2006, 106, 2651; (d) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.;
Lemaire, M. Chem. Rev. 2002, 102, 1359; (e) Belardi, J. K.; Micalizio, G. C. Angew.
Chem., Int. Ed. 2008, 47, 4005; (f) Jia, Y.; Bois-Choussy, M.; Zhu, J. Angew. Chem.,
Int. Ed. 2008, 47, 4167; (g) Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.;
Blagg, B. S. J. J. Am. Chem. Soc. 2006, 128, 15529; (h) Nicolaou, K. C.; Li, H.; Boddy,
C. N. C.; Ramanjulu, J. M.; Yue, T. Y.; Natarajan, S.; Chu, X.; Bra¨se, J. S.; Ru¨ bsam, F.
Chem.dEur. J. 1999, 5, 2584; (i) Stanforth, S. P. Tetrahedron 1998, 54, 263.
2. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 4685.
4.12. Preparation of Pd complex (10)
3. (a) Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed.; Wiley-VCH: New York, NY,
2000; (b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric
Catalysis; Springer: Berlin, 1999; Vols. 1–3; (c) Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; (d) Tsuji, J.
Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley
and Sons: Chichester, UK, 1995; (e) Noyori, R. Asymmetric Catalysis in Organic
Chemistry; John Wiley and Sons: New York, NY, 1994.
4. (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (b) Andersen, N. G.; Keay, B.
A. Chem. Rev. 2001, 101, 997; (c) Bessel, C. A.; Aggarwal, P.; Marschilok, A. C.;
Takeuchi, K. J. Chem. Rev. 2001, 101, 1031; (d) Applied Homogeneous Catalysis
with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH: New
York, NY, 1996; Vols. 1 and 2; (e) Noyori, R. Asymmetric Catalysis in Organic
Synthesis; John Wiley and Sons: New York, NY, 1994; (f) Parshall, G. W.; Ittel, S.
D. Homogeneous Catalysis, 2nd ed.; John Wiley and Sons: New York, NY, 1992;
Chapter 8.
2-Methoxy-6-[(pyridine-2-ylmethylimino)-methyl]-phenol (0.1
21 g, 0.005 mol) and palladium acetate (0.112 g, 0.005 mol) were
placed in 100 mL round flask. The mixture was then allowed to
react in dried THF (10 mL) at room temperature for overnight. Re-
moval of the solvent in vacuum afforded complex as dark-brown
solid product. Yield: 0.192 g (94.51%). 1H NMR (CDCl3,
d/ppm): 8.13
(d, J¼5.6 Hz, 1H, Py), 8.06 (s, 1H, HC]N), 7.56 (t, J¼7.0 Hz, 1H, Py),
7.22 (d, J¼8.8 Hz, 1H, Py), 7.13 (t, J¼6.4 Hz, 1H, Py), 6.70 (d, J¼7.2 Hz,
2H, Ar), 6.33 (t, J¼7.6 Hz, 1H, Ar), 5.60 (s, 2H, CH2), 3.80 (s, 3H,
OCH3), 2.40 (s, 3H, CH3).
1H NMR (DMSO-d6,
d/ppm): 8.12–8.06 (m, 3H, HC]N and Py),
5. Louie, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 1996, 35, 2359.
6. (a) Lai, Y.-C.; Chen, H.-Y.; Hung, W.-C.; Lin, C.-C.; Hong, F.-E. Tetrahedron 2005,
61, 9484; (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290; (c) Botella,
L.; Najera, C. Angew. Chem., Int. Ed. 2002, 41, 179; (d) Grasa, G. A.; Hillier, A. C.;
Nolan, S. P. Org. Lett. 2001, 3, 1077; (e) Herrmann, W. A.; Weskamp, T.; Bohm, V.
P. W. Adv. Organomet. Chem. 2001, 48, 1; (f) Jafapour, L.; Nolan, S. P. Adv. Or-
ganomet. Chem. 2001, 46, 181; (g) Bourissou, D.; Guerret, O.; Gabbaı¨;, F. P.;
Bertrand, G. Chem. Rev. 2000, 100, 39; (h) Alonso, D. A.; Najera, C.; Pacheco, M.
C. Org. Lett. 2000, 2, 1823; (i) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913; (j)
Regitz, M. Angew. Chem., Int. Ed. 1996, 35, 725; (k) Chandrasekhar, S.; Moha-
patra, S. Tetrahedron Lett. 1998, 39, 695; (l) Herrmann, W. A.; Ko¨cher, C. Angew.
Chem., Int. Ed. 1997, 36, 2162; (m) Lappert, M. F. J. Organomet. Chem. 1988, 358,
185; (n) Lappert, M. F. J. Organomet. Chem. 1975, 100, 139.
7.71 (d, J¼8.0 Hz, 1H, Py), 7.53 (t, J¼6.8 Hz, 1H, Py), 7.05 (d, J¼8.4 Hz,
1H, Ar), 6.89 (d, J¼7.6 Hz, 1H), 6.52 (t, J¼7.8 Hz, 1H, Ar), 5.50 (s, 2H,
CH2), 3.67 (s, 3H, OCH3), 1.91 (s, 3H, CH3). 13C NMR (DMSO-d6,
d/
ppm): 167.47, 157.65, 151.50, 149.23, 148.01, 136.97, 123.23, 122.48,
122.02, 118.43, 117.81, 114.98, 63.29, 55.73. HRMS: m/z¼347.006
(MꢁOAcþ). Anal. Calcd for 10: C, 48.41; H, 4.54; N, 6.64. Found: C,
46.72; H, 5.82; N, 6.72.
4.13. Computational methods
7. (a) Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71,
9499; (b) Mino, T.; Shirae, Y.; Sasai, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem.
2006, 71, 6834; (c) Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. J. Org.
Chem. 2005, 70, 2191; (d) Grasa, G. A.; Singh, R.; Stevens, E. D.; Nolan, S. P.
J. Organomet. Chem. 2003, 687, 269.
All calculations were carried out using the Gaussian 03 package,
in which the tight criterion (10ꢁ8 hartree) is the default for the SCF
convergence.17 The molecular geometries were fully optimized