A R T I C L E S
Guo et al.
cessful, typically yielding homopolymer mixtures or copolymers
with styrene incorporation <1 mol %.9 The development of
homogeneous single-site polymerization catalysts has led to a
resurgence of interest in this field; however, challenges
remain.10-12 For Cp′TiXYZ-type catalysts10 (Cp′ ) substituted
or unsubstituted η5-cyclopentadienyl, indenyl, fluorenyl; X, Y,
Z ) halogen, alkyl, alkoxy, aryloxy, ketimide, etc. ligand),
substantial quantities of homopolymer contaminants are copro-
duced in addition to ethylene-styrene copolymers, likely due
to multiple active species, and in certain cases, the presence of
excess cocatalyst. CGCTi catalysts represent another major
advance in this field, producing ethylene-styrene copolymers
exclusively; however styrene incorporation is invariably <50
mol %, regardless of the styrene:ethylene feed ratio. The
copolymer obtained is described as “pseudo-random”, because
no head-to-tail styrene coupling is detected, even at relatively
high levels of styrene incorporation.12
As a common, indispensable commodity plastic, polystyrene
has also attracted extensive research efforts. Isotactic polystyrene
was first synthesized by heterogeneous Ziegler-Natta catalysis13
and was recently synthesized by homogeneous catalysis.14,15
Cp′TiXYZ-type metallocene catalysts16 and some other metallo-
cene11b,17 and nonmetallocene18 catalysts are known to afford
syndiotactic polystyrene; however, the nature of the catalytically
active species and the mechanism of stereocontrol have not been
unambiguously established. Mononuclear CGCTi catalysts
exhibit marginal activity in styrene homopolymerization,5e,12h
which is thought to be due to catalyst deactivation via arene
“back-coordination”19 in the 2,1-insertion product (A). It would
therefore be desirable to have a generalizable catalyst type,
which, by tuning the symmetry of the ancillary ligand structure,
could afford polystyrene products with efficient productivity
and predetermined stereochemistry.
In a preliminary investigation,5e we briefly communicated that
Ti2 not only exhibits far greater activity for styrene homopo-
lymerizations than does Ti1, and installs unusual 1,2-insertion
regiochemistry20 (up to ∼50%) in the initiation steps, but affords
broad-range controllable styrene incorporation in ethylene-
styrene copolymerizations, arguing that multinuclear cooperative
catalysis indeed mediates unusual styrene polymerization pat-
terns, although neither the scope, kinetics, nor mechanism were
defined. In the present contribution, we investigate ethylene and
styrene reactivity ratios for both Ti2- and Ti1-mediated copo-
lymerizations, and extend comparative copolymerization studies
to a selected variety of substituted styrenic comonomers (Chart
2) and to CGCZr catalysts (C1-Zr2, Zr2, and Zr1) to fully
characterize the scope and mechanism of this bimetallic effect.
We also investigate the influence of metal-metal distance on
these bimetallic cooperative effects in styrene homopolymeri-
zation and ethylene-styrene copolymerizations by comparing
the properties of the methylene-bridged bimetallic catalysts C1-
Ti2 and C1-Zr2 to the ethylene-bridged bimetallic variants Ti2
and Zr2. In addition, model compound (µ-CH2CH2-3,3′){(η5-
(9) (a) Aaltonen, P.; Seppa¨la¨, J.; Matilainen, L.; Leskela¨, M. Macromolecules
1994, 27, 3136-3138. (b) Mani, P.; Burns, C. M. Macromolecules 1991,
24, 5475-5477. (c) Soga, K.; Lee, D. H.; Yanagihara, H. Polym. Bull.
1988, 20, 237-241.
(10) (a) Zhang, H.; Nomura, K. Macromolecules 2006, 39, 5266-5274. (b)
Zhang, H.; Nomura, K. J. Am. Chem. Soc. 2005, 127, 9364-9365. (c)
Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N. Macromolecules 2002,
35, 5388-5395. (d) Nomura, K.; Komatsu, T.; Imanishi, Y. Macromol-
ecules 2000, 33, 8122-8124. (e) Lee, D. H.; Yoon, K. B.; Kim, H. J.;
Woo, S. S.; Noh, S. K. J. Appl. Polym. Sci. 1998, 67, 2187-2198. (f) Wu,
Q.; Ye, Z.; Gao, Q.; Lin, S. Macromol. Chem. Phys. 1998, 199, 1715-
1720. (g) Xu, G.; Lin, S. Macromolecules 1997, 30, 685-693. (h)
Pellecchia, C.; Pappalardo, D.; D’Arco, M.; Zambelli, A. Macromolecules
1996, 29, 1158-1162. (i) Oliva, L.; Mazza, S.; Longo, P. Macromol. Chem.
Phys. 1996, 197, 3115-3122. (j) Oliva, L.; Izzo, L.; Longo, P. Macromol.
Rapid Commun. 1996, 17, 745-748. (k) Aaltonen, P.; Seppala, J. Eur.
Polym. J. 1995, 31, 79-83. (l) Aaltonen, P.; Seppala, J. Eur. Polym. J.
1994, 30, 683-687. (m) Longo, P.; Grassi, A.; Oliva, L. Macromol. Chem.
Phys. 1990, 191, 2387-2396.
(16) (a) Knjazhanski, S. Y.; Cadenas, G.; Garc´ıa, M.; Pe´rez, C. M.; Nifant’ev,
I. E.; Kashulin, I. A.; Ivchenko, P. V.; Lyssenko, K. A. Organometallics
2002, 21, 3094-3099. (b) Nomura, K.; Komatsu, T.; Imanishi, Y.
Macromolecules 2000, 33, 8122-8124. (c) Kaminsky, W.; Lenk, S.; Scholz,
V.; Roesky, H. W.; Herzog, A. Macromolecules 1997, 30, 7647-7650.
(d) Foster, P. F.; Chien, J. C. W.; Rausch, M. D. Organometallics 1996,
15, 2404-2409. (e) Pellecchia, C.; Longo, P.; Proto, A.; Zambelli, A.
Makromol. Chem., Rapid Commun. 1992, 13, 265-268. (f) Ishihara, N.;
Kuramoto, M.; Uoi, M. Macromolecules 1988, 21, 3356-3360.
(17) (a) Chen, J.; Li, Y.; Wu, J.; Hu, N. J. Mol. Cat. A: Chem. 2005, 232,
1-7. (b) Kim, Y.; Han, Y.; Hwang, J.; Kim, M. W.; Do, Y. Organometallics
2002, 21, 1127-1135.
(11) (a) Capacchione, C.; Proto, A.; Ebeling, H.; Mu¨lhaupt, R.; Okuda, J. J.
Polym. Sci., Part A: Polym. Chem. 2006, 44, 1908-1913. (b) Luo, Y.;
Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910-13911. (c)
Sernetz, F. G.; Mu¨lhaupt, R.; Fokken, S.; Okuda, J. Macromolecules 1997,
30, 1562-1569.
(12) (a) Arriola, D. J.; Bokota, M.; Campbell, R. E., Jr.; Klosin, J.; LaPointe,
R. E.; Redwine, O. D.; Shankar, R. B.; Timmers, F. J.; Abboud, K. A. J.
Am. Chem. Soc. 2007, 129, 7065-7076. (b) Noh, S. K.; Lee, M.; Kum, D.
H.; Kim, K.; Lyoo, W. S.; Lee, D. H. J. Polym. Sci., Part A: Polym. Chem.
2004, 42, 1712-1723. (c) Noh, S. K.; Yang, Y.; Lyoo, W. S. J. Appl.
Polym. Sci. 2003, 90, 2469-2474. (d) Sukhova, T. A.; Panin, A. N.;
Babkina, O. N.; Bravaya, N. M. J. Polym. Sci., Part A: Polym. Chem.
1999, 37, 1083-1093. (e) Xu, G. Macromolecules 1998, 31, 2395-2402.
(f) Sernetz, F. G.; Mu¨lhaupt, R.; Amor, F.; Eberle, T.; Okuda, J. J. Polym.
Sci., Part A: Polym. Chem. 1997, 35, 1571-1578. (g) Timmers, F. J. U.S.
Patent 5703187, 1997. (h) Sernetz, F. G.; Mu¨lhaupt, R.; Waymouth, R. M.
Macromol. Chem. Phys. 1996, 197, 1071-1083. (i) Stevens, J. C.; Timmers,
F. J.; Wilson, D. R.; Schmidt, G. F.; Nickias, P. N.; Rosen, R. K.; Knight,
G. W.; Lai, S. Y. Eur. Pat. Appl. 1991, 58, EP 0 416 815 A2.
(13) (a) Kern, R. J.; Hurst, H. G.; Richard, W. R. J. Polym. Sci. 1960, 45, 195-
204. (b) Overberger, C.; Ang, F.; Mark, H. J. Polym. Sci. 1959, 35, 381-
389. (c) Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.;
Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708-1710.
(14) For examples of anionic isospecific styrene polymerization, see: (a) Makino,
T.; Hogen-Esch, T. E. Macromolecules 1999, 32, 5712-5714. (b) Cazza-
niga, L.; Cohen, R. E. Macromolecules 1989, 22, 4125-4128.
(18) Zambelli, A.; Oliva, L.; Pellecchia, C. Macromolecules 1989, 22, 2129-
2130.
(19) For examples of phenyl ring “back-coordination” to d0 Ti or Zr, see: (a)
Manke, D. R.; Nocera, D. G. Inorg. Chim. Acta 2003, 345, 235-240. (b)
Cotton, F. A.; Murillo, C. A.; Petrukhina, M. A. J. Organomet. Chem.
1999, 573, 78-86. (c) Warren, T. H.; Schrock, R. R.; Davis, W. M.
Organometallics 1996, 15, 562-569. (d) Bochmann, M.; Lancaster, S. J.;
Hursthouse, M. B.; Malik, K. M. A. Organometallics 1994, 13, 2235-
2243. (e) Pellecchia, C.; Grassi, A.; Zambelli, A. Organometallics 1994,
13, 298-302. (f) Pellecchia, C.; Grassi, A.; Immirzi, A. J. Am. Chem. Soc.
1993, 115, 1160-1162. (g) Pellecchia, C.; Immirzi, A.; Grassi, A.; Zambelli,
A. Organometallics 1993, 12, 4473-4478. (h) Bochmann, M.; Lancaster,
S. J. Organometallics 1993, 12, 633-640. (i) Jordan, R. F.; LaPointe, R.
E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109,
4111-4113. (j) Stoeckli-Evans, H. HelV. Chim. Acta 1974, 57, 684-689.
(k) Bassi, I. W.; Allegra, G.; Scordamaglia, R.; Chioccola, G. J. Am. Chem.
Soc. 1971, 93, 3787-3788.
(20) For studies of styrene insertion regiochemistry, see: (a) Capacchione, C.;
Proto, A.; Ebeling, H.; Mulhau¨pt, R.; Mo¨ller, K.; Spaniol, T. P.; Okuda, J.
J. Am. Chem. Soc. 2003, 125, 4964-4965. (b) Izzo, L.; Napoli, M.; Oliva,
L. Macromolecules 2003, 36, 9340-9345. (c) Caporaso, L.; Izzo, L.;
Zappile, S.; Oliva, L. Macromolecules 2000, 33, 7275-7282. (d) Pellecchia,
C.; Pappalardo, D.; Oliva, L.; Zambelli, A. J. Am. Chem. Soc. 1995, 117,
6593-6594. (e) Zambelli, A.; Longo, P.; Pellecchia, C.; Grassi, A.
Macromolecules 1987, 20, 2035-2037. (f) Pellecchia, C.; Longo, P.; Grassi,
A.; Ammendola, P.; Zambelli, A. Makromol. Chem., Rapid Commun. 1987,
8, 277-279.
(15) (a) De Carlo, F.; Capacchione, C.; Schiavo, V.; Proto, A. J. Polym. Sci.,
Part A: Polym. Chem. 2006, 44, 1486-1491. (b) Beckerle, K.; Manivan-
nan, R.; Spaniol, T. P.; Okuda, J. Organometallics 2006, 25, 3019-3026.
(c) Capacchione, C.; Manivannan, R.; Barone, M.; Beckerle, K.; Centore,
R.; Oliva, L.; Proto, A.; Tuzi, A.; Spaniol, T. P.; Okuda, J. Organometallics
2005, 24, 2971-2982. (d) Capacchione, C.; Proto, A.; Ebeling, H.;
Mulhau¨pt, R.; Mo¨ller, K.; Spaniol, T. P.; Okuda, J. J. Am. Chem. Soc.
2003, 125, 4964-4965.
9
2248 J. AM. CHEM. SOC. VOL. 130, NO. 7, 2008