Journal of the American Chemical Society
Communication
J.; Jiang, Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (e) Zhao, X.; Wu, G.;
Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 132, 3296.
(13) Grubbs, R. H., Ed. Handbook of Metathesis; Wiley-VCH:
Weinheim, 2003.
(14) (a) Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119,
3185. (b) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.;
Caulton, K. G. J. Am. Chem. Soc. 2000, 122, 8916. (c) Hughes, R. P.;
Laritchev, R. B.; Yuan, J.; Golen, J. A.; Rucker, A. N.; Rheingold, A. L.
J. Am. Chem. Soc. 2005, 127, 15020. (d) Bourgeois, C. J.; Hughes, R.
P.; Yuan, J.; DiPasquale, A. G.; Rheingold, A. L. Organometallics 2006,
25, 2908. (e) Choi, J.; Wang, D. Y.; Kundu, S.; Choliy, Y.; Emge, T. J.;
Krogh-Jespersen, K.; Goldman, A. S. Science 2011, 332, 1545.
(15) Trnka, T. M.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed.
2001, 40, 3441.
(16) (a) Trahanovsky, W. S.; Robbins, M. D.; Smick, D. J. Am. Chem.
Soc. 1971, 93, 2086. (b) Bushby, R. J. J. Chem. Soc., Perkin Trans. 1
1975, 2513. (c) Zhang, Y.; Wang, J. In Alkene Synthesis Through
Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones. In
Stereoselective Alkene Synthesis; Wang, J., Ed.; Springer: Berlin, 2012.
(17) CuCl-catalyzed gem-difluoroolefination of hydrazones of
aromatic aldehydes with CF2Br2 was shown to be inefficient (in 20−
36% yields). See: Nenajdenko, V. G.; Varseev, G. N.; Korotchenko, V.
N.; Shastin, A. V.; Balenkova, E. S. J. Fluorine Chem. 2003, 124, 115.
(18) For typical CuCF3 reagent preparation methods, see:
(a) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
(b) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91.
(c) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2011, 50, 3793. (d) Zanardi, A.; Novikov, M. A.;
Martin, E.; Benet-Buchholz, J.; Grushin, V. V. J. Am. Chem. Soc. 2011,
133, 20901.
(19) (a) Chen, Q.-Y.; Wu, S.-W. J. Chem. Soc., Chem. Commun. 1989,
705. (b) See ref 11a. (c) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang,
W.; Feng, X.; Huang, K.-W. Organometallics 2011, 34, 2833.
(20) Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257.
(21) β-Fluorine-containing anions easily undergo fluorine elimination
to afford alkenes. For reviews, see: (a) Uneyama, K.; Katagiri, T.; Amii,
H. Acc. Chem. Res. 2008, 41, 817. (b) Amii, H.; Uneyama, K. Chem.
Rev. 2009, 109, 2119.
REFERENCES
■
(1) (a) Beg
́
ue,
́
J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal
Chemistry of Fluorine; Wiley-VCH: Weinheim, 2008. (b) Tressaud, A.;
Haufe, G. Fluorine and Health: Molecular Imaging, Biomedical Materials
and Pharmaceuticals; Elsevier: Oxford, 2008. (c) Uneyama, K.
Organofluorine Chemistry; Blackwell: Oxford, 2006.
(2) (a) Berry, C. N.; Lassalle, G.; Lunven, C.; Altenburger, J. M.;
Guilbert, F.; Lale, A.; Herault, J.-P.; Lecoffre, C.; Pfersdorff, C.;
́ ́
Herbert, J.-M.; O’Connor, S. E. J. Pharmacol. Exp. Ther. 2002, 303,
1189. (b) Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.; Galtier,
D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain, J.;
Herault, J.-P.; Schaeffer, P.; O’Connor, S. E.; Herbertb, J.-M. Bioorg.
Med. Chem. 2004, 12, 1713. (c) Rogawski, M. A. Epilepsy Res. 2006,
69, 273. (d) Moore, W. R.; Schatzman, G. L.; Jarvi, E. T.; Gross, R. S.;
McCarthy, J. R. J. Am. Chem. Soc. 1992, 114, 360.
(3) Motherwell, W. B.; Tozer, M. J.; Ross, B. C. J. Chem. Soc., Chem.
Commun. 1989, 1437.
(4) (a) Miller, W. T., Jr.; Burnard, R. J. J. Am. Chem. Soc. 1968, 90,
7367. (b) Nguyen, B. V.; Burton, D. J. J. Org. Chem. 1997, 62, 7758.
(5) Hayashi, S.-I.; Nakai, T.; Ishikawa, N.; Burton, D. J.; Naae, D. G.;
Kesling, H. S. Chem. Lett. 1979, 983.
(6) (a) Lazerte, J. D.; Koshar, R. J. J. Am. Chem. Soc. 1955, 77, 910.
(b) Suda, M. Tetrahedron Lett. 1980, 21, 2555.
(7) (a) Fuqua, S. A.; Duncan, W. G.; Silverstein, R. M. Tetrahedron
Lett. 1964, 23, 1461. (b) Fuqua, S. A.; Duncan, W. G.; Silverstein, R.
M. J. Org. Chem. 1965, 30, 1027. (c) Fuqua, S. A.; Duncan, W. G.;
Silverstein, R. M. J. Org. Chem. 1965, 30, 2543. (d) Naae, D. G.;
Burton, D. J. Synth. Commun. 1973, 3, 197. (e) Burton, D. J.;
Greenlimb, P. E. J. Org. Chem. 1975, 40, 2797. (f) Nowak, I.; Robins,
M. J. Org. Lett. 2005, 7, 721. (g) Thomoson, C. S.; Martinez, H.;
Dolbier, W. R., Jr. J. Fluorine Chem. 2013, 150, 53. (h) Zheng, J.; Cai,
J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
(i) Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. Tetrahedron Lett. 1982,
23, 2323. (j) Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T.; Matthews,
D. P.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5571.
(8) (a) Sabol, J. S.; McCarthy, J. R. Tetrahedron Lett. 1992, 33, 3101.
(b) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.
(c) Archibald, T. G.; Baum, K. J. Org. Chem. 1990, 55, 3562.
(d) Ocampo, R.; Dolbier, W. R., Jr.; Paredes, R. J. Fluorine Chem.
1998, 88, 31.
(9) (a) Raghavanpillai, A.; Burton, D. J. J. Org. Chem. 2006, 71, 194.
(b) Choi, J. H.; Jeong, I. H. Tetrahedron Lett. 2008, 49, 952. (c) Han,
S. Y.; Jeong, I. H. Org. Lett. 2010, 12, 5518. (d) Han, S. Y.; Lee, H. Y.;
Jeon, J. H.; Jeong, I. H. Tetrahedron Lett. 2012, 53, 1833. (e) Pschierer,
J.; Peschek, N.; Plenio, H. Green Chem. 2010, 12, 636.
(10) For selective examples of recently reported transition-metal-
catalyzed fluorination, see: (a) Hull, K. L.; Anani, W. Q.; Sanford, M.
S. J. Am. Chem. Soc. 2006, 128, 7134. (b) Watson, D. A.; Su, M.;
Teverovskiy, G.; Zhang, Y.; Garda-Fortanet, J.; Kinzel, T.; Buchwald,
S. L. Science 2009, 325, 1661. (c) Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am.
Chem. Soc. 2009, 131, 7520. (d) Tang, P.; Furuya, T.; Ritter, T. J. Am.
Chem. Soc. 2010, 132, 12150. (e) Liu, W.; Huang, X.; Cheng, M.-J.;
Nielsen, R. J.; Goddard, W. A.; Groves, J. T. Science 2012, 337, 1322.
(f) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013,
135, 9342.
(22) The reason for the ratio CuI/CsF = 2/1 is that 1 equiv of CuI is
expected to prepare “CuCF3”, and the other equivalent is to activate
“CuCF3” to form highly reactive “CuCF3”.
(23) (a) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem−Eur. J.
2003, 9, 4068. (b) Davies, H. M.; Beckwith, R. E. J. Chem. Rev. 2003,
103, 2861.
(24) (a) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc.
2008, 130, 8600. (b) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A.
Organometallics 2008, 27, 6233.
(25) (a) Nickon, A. Acc. Chem. Res. 1993, 26, 84. (b) Celebi, S.;
Leyva, S.; Modarelli, D. A.; Platz, M. S. J. Am. Chem. Soc. 1993, 115,
8613.
(26) For reviews on Cu-catalyzed transformation via Cu-carbene
intermediate, see: (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41,
560. (b) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024. (c) Xia, Y.;
Zhang, Y.; Wang, J. ACS Catal. 2013, 3, 2586.
(11) For selective examples of recently reported transition-metal-
catalyzed fluoroalkylations, see: (a) Oishi, M.; Kondo, H.; Amii, H.
Chem. Commun. 2009, 1909. (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.;
Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
(c) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
3648. (d) Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013,
49, 6385.
(12) For selective examples of recently reported transition-metal-
catalyzed fluoroarylations, see: (a) Lafrance, M.; Rowley, C.; Woo, T.
K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754. (b) Do, H.-Q.;
Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (c) Nakao, Y.;
Kashihara, N.; Kanyiva, K. S.; Hiyama, Y. J. Am. Chem. Soc. 2008, 130,
16170. (d) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang,
17305
dx.doi.org/10.1021/ja409941r | J. Am. Chem. Soc. 2013, 135, 17302−17305