656
H.-H. Ha et al. / Bioorg. Med. Chem. Lett. 18 (2008) 653–656
7. Huang, H. C.; O’Brien, W. T.; Klein, P. S. Drug Discov.
Ther. Strateg. 2006, 3, 613.
8. Martinez, A.; Alonso, M.; Castro, A.; Pe’rez, C.; Moreno,
F. J. J. Med. Chem. 2002, 45, 1292.
9. Takada, Y.; Fang, X.; Jamaluddin, M. S.; Boyd, D. D.;
Aggarwal, B. B. J. Biol. Chem. 2004, 279, 39541.
10. Whittle, B. J. R.; Varga, C.; Posa, A.; Molnar, A.; Collin,
M.; Thiemermann, C. J. Pharmacol. 2006, 147, 575.
11. Angela, V.; Sientay, C.; Ira, G.; Uday, S.; Sivaram,
P. J. Biol. Chem. 2006, 281, 16985.
12. Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.;
Moldawer, L. L. Nat. Rev. Drug Discov. 2003, 2, 736.
13. Witherington, J.; Bordas, V.; Garland, S. L.; Hickey, D.
M. B.; Ife, R. J.; Liddle, J.; Saunders, M.; Smith, D. G.;
Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1577.
14. Witherington, J.; Bordas, V.; Gaiba, A.; Garton, N. S.;
Naylor, A.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.;
Takle, A. K.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003,
13, 3055.
15. Fonquerna, S.; Miralpeix, M.; Pages, L.; Puig, C.; Cardus,
A.; Anton, F.; Cardenas, A.; Vilella, D.; Aparici, M.;
Calaf, E.; Prieto, J.; Gras, J.; Huerta, J. M.; Warrellow,
G.; Beleta, J.; Ryder, H. J. Med. Chem. 2004, 47, 6326.
16. Allen, S. H.; Johns, B. A.; Gudmundsson, K. S.; Freeman,
G. A.; Boyd, F. L.; Sexton, C. H.; Selleseth, D. W.;
Creech, K. L.; Moniri, K. L. Bioorg. Med. Chem. 2006, 13,
944.
17. The molecular modeling was performed with the Maestro
software package from Schrodinger. The ligand was
manually docked into the active site. Structural co-
ordinates for the GSK-3 structure were taken from: Bax,
B.; Carter, P. S.; Lewis, C.; Guy, A. R.; Bridges, A.;
Tanner, R.; Pettman, G.; Mannix, C.; Culbert, A. A.;
Brown, M. J. B.; Smith, D. G.; Reith, A. D. Structure
2001, 9, 1143.
18. GSK-3b was assayed in 96-well microtiter plates at a final
concentration of 20 nM in 100 mL Hepes at pH 7.2
containing 10 mM MgCl2, 0.1 mg/mL bovine serum albu-
min, 1 mM dithiothreitol, 0.3 mg/mL heparin, 2.8 M
peptide substrate (Biotin-Ahx-AAAKRREILSRRP-
S(PO3)YR-amide), 2.5 M ATP, and 0.2 Ci/well
[33P]ATP. After 40 min, the reaction was stopped by
addition of 100 mM EDTA and 1.0 mM ATP, solution in
100 mM Hepes followed by a solution of streptavidin
coated SPA beads (Amersham) in PBS to give a final
concentration of 0.25 mg of beads per assay well. The
plates were counted on a Packard TopCount NXT
microplate counter.
Figure 3. In vivo efficacy of compound 22 for serum TNF-a level after
LPS treatment.
Not surprisingly, compound 3 was not active in the
functional assay; however, compounds 12 and 22 exhib-
ited good activities. Based on this result, it was clear that
controlling cytokine levels involves disruption of the sig-
nal transduction pathway leading to their release from
stimulated inflammatory cells by way of GSK-3b kinase
and NF-jB transcription (Fig. 3).
Compound 22 was examined for inhibition20 of TNF-a
release in Balb/C mice challenged with LPS. It inhibited
TNF-a level dramatically at 300 mg/kg dose compared
to a reference compound,21 p38 Map kinase inhibitor
BIRB796.22 Further in vivo efficacy study on this series
of compounds is in progress.
In conclusion, we report a series of fused heterocyclic
GSK-3 inhibitors showing nanomolar potency against
GSK-3b, and submicromolar activities toward NF-jB
and LPS-stimulated human monocytic cells (THP-1).
From this result, in vitro TNF-a release inhibition and
in vivo sepsis model could be used to identify promising
candidates for treatment of inflammation related
diseases.
Acknowledgment
We are grateful to Choongwae Pharmaceuticals for run-
ning the reporter gene assay and TNF-a release assay.
19. Human monocytic cell line (THP-1) TNF-a release assay;
THP-1 cells were seeded into 96-well plates at 1 · 106 cells/
mL (200 L/well) in medium containing FCS (1%) and
incubated overnight. Following pretreatment with com-
pounds for 1 h, the cells were incubated with LPS (20 g/
mL) for a further 24 h. TNF-a release was measured in the
supernatants by sandwich ELISA. IC50 values shown from
repeat experiments are means (n = 3).
References and notes
1. For recent reviews, see (a) Hayden, M. S.; Ghosh, S. Genes
Dev. 2004, 18, 2195; (b) Manning, A. M. Drug Discov.
Today 1996, 1, 151.
2. Smolen, J. S.; Seiner, G. Nat. Rev. Drug Discov. 2003, 2,
473.
3. O’Shea, J. J.; Ma, A.; Lipsky, P. Nat. Rev. Immunol. 2002,
2, 37.
4. McCulloch, C. A.; Downey, G. P.; El-Gabalawy, H. Nat.
Rev. Drug Discov. 2006, 5, 864.
5. (a) Jope, R. S.; Johnson, G. V. W. Trends Biochem. Sci.
2004, 29, 95; (b) Meijer, L.; Flajolet, M.; Greengard, P.
Trends Pharmacol. Sci. 2004, 25, 471.
20. Mouse TNF-a release assay; compound was administered
orally to balb/c mice 30 min prior to LPS (0.1 mg/kg ip)
challenge. Serum TNF-a levels were determined 90 min
after LPS insult. Results represent means (n = 3).
21. Regan, J.; Breitfelder, S.; Cirillo, P.; Gilmore, T.; Graham,
A. G.; Hickey, E.; Klaus, B.; Madwed, J.; Moriak, M.;
Moss, N.; Pargellis, C.; Pav, S.; Proto, A.; Swinamer, A.;
Tong, L.; Torcellini, C. J. Med. Chem. 2002, 45, 1292.
22. Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.;
Pearson, G.; Xu, B.-e.; Wright, A.; Vanderbilt, C.; Cobb,
M. H. Chem. Rev. 2001, 101, 2449.
6. Demarchi, F.; Bertoli, C.; Sandy, P.; Schneider, C. J. Biol.
Chem. 2003, 278, 39583.