Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
ChemComm
pathway might be involved in this photocatalytic
transformation. To ensure whether this reaction is governed by
Author Contributions
§P.-J. X. and Z.-P. Y. contributed equally to tDhOisI:w1o0r.1k0.39/C8CC09385G
Notes
a
radical chain propagation process or a visible-light
photocatalytic one, light/dark experiments were also
investigated. Predictably, the product formation was observed
The authors declare no competing financial interest.
only during the periods with constant irradiation, suggesting ACKNOWLEDGMENT
that a chain propagation-type mechanism was unlikely involved
We gratefully acknowledge the financial support from the
(see ESI for details). Further Stern−Volmer plot measurements
showed a significant quenching of the excited Ir(ppy)3 by N,N'-
cyclicazomethine imines in DMSO (see ESI for details).
Obviously, the electron transfer process could also be promoted
by ascorbic acid. However, it is worth mentioning that a
complementary quenching cycle by ascorbic acid or chain
propagation process could not be completely ruled out by the
current experimental results.
Based on the above-mentioned results and the redox
potentials of the involved species, a possible mechanism for this
reaction is proposed in Scheme 3. Firstly, Ir(ppy)3 was excited by
visible light to generate the reductant *Ir(ppy)3 (Ered = -1.82 V vs
Ag/AgCl in DMSO), which rapidly reduced N,N'-
cyclicazomethine imines 1a' (Ered = -1.76 V vs Ag/AgCl in DMSO)
via single-electron transfer (SET) to generate radical anion B and
Ir(IV). And thermodynamically, N,N'-cyclicazomethine imine 1a
with a lower reduction potential than BrCF2CO2Et was then
preferentially reduced by *Ir(ppy)3 via a single-electron transfer.
Subsequently, ascorbic acid (Eox = +0.32 V vs Ag/AgCl in DMSO)
was oxidized by Ir(IV) (Eox = +0.68 V vs Ag/AgCl in DMSO) to
complete the photocatalytic cycle (see ESI for details). The
National Natural Science Foundation of China (21576296,
21676302, 21776318, and 81703365), Natural Science
Foundation of Hunan Province (2017JJ3401), and Central South
University.
Notes and references
1
(a) H. Dorn, A. Otto, Chem. Ber. 1968, 101, 3287; (b) H. Dorn,
A. Otto, Angew. Chem. 1968, 80, 196 Angew. Chem. Int. Ed.
Engl. 1968, 7, 214.
2
(a) J. G. Schantl, 2010, 99, 185; (b) C. Najera, J. M. Sansano, M.
Yus, Org. Biomol. Chem. 2015, 13, 8596; (c) N. P. Belskaya, V.
A. Bakulev, Z. Fan, Chem. Hetercyclo. Com. 2016, 52, 627.
(a) R. J. Ternansky, S. E. Draheim, A. J. Pike, F. T. Counter, J.
A. Eudaly, J. S. Kasher, J. Med. Chem. 1993, 36, 3224.
S. Gautam, S. Rani, S. A. Aldossary, A. S. Saeedan, M. N. Ansari,
G. Kaithwas, Toxicol. Appl. Pharmacol. 2018, 351, 57.
E. Kosower, E. Hershkowitz, Isr. Patent ISXXAQ IL 94658
[Chem. Abstr. 1994, 122, 214 077].
3
4
5
6
7
E. M. Kosowerl, A. R. Radkowskyl, A. H. Fairlambz, S. L. Croft,
R. A. Neal, Eur. J. Med. Chem. 1995, 30, 659.
(a) T. M. Tong, T. Soeta, T. Suga, K. Kawamoto, Y. Hayashi, Y.
Ukaji, J. Org. Chem. 2017, 82, 1969; (b) S. Shen, Y. Yang, J.
Duan, Z. Jia, Liang, J. Org. Biomol. Chem. 2018, 16, 1068; (c)
M. Wang, Z. Huang, J. Xu, Y. R. Chi, J. Am. Chem. Soc. 2014,
136, 1214; (d) J. Du, X. Xu, Y. Li, L. Pan, Q. Liu, Org. Lett. 2014,
16, 4004; (e) W. Meng, H.-T. Zhao, J. Nie, Y. Zheng, A. Fu, J.-A.
Ma, Chem. Sci. 2012, 3, 3053.
resulting ascorbyl radical tended to proceed
a
disproportionation reaction to generate dehydroascorbic acid
(DAsc) and ascorbate (Asc-) simultaneously. Synchronously,
ascorbate further reduced BrCF2CO2Et to deliver difluoroalkyl
radical A.16 Finally, the sequential radical-radical coupling and
protonation facilely gave the final product 3a.
8
9
(a) L. Rodina, O. A. Verzhba, I. K. Korobitsyna, Chem.
Heterocycl. Com. 1983, 19, 1345 (b) G. Geissler, W. Fust, B.
Krüger, G. Tomaschewski, Adv. Synth. Catal. 1983, 325, 205.
T. Dorn, H. Kreher, Tetrahedron Lett. 1988, 29, 2939.
Scheme 3. Proposed Mechanism.
10 (a) R. Shintani. Y. Soh, T. Hayashi. Org. Lett. 2010, 12, 4106;
(b) H. Y. Wang, C. W. Zheng, Z. Chai, J. X. Zhang, G. Zhao, Nat.
Commun. 2016, 7, 12720; (c) H. Kawai, A. Kusuda, S.
Nakamura, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. Engl.
2009, 48, 6324.
11 (a) K. Mîller, C. Faeh, F. Diederich, Science 2007, 317, 1881
(b) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem.
Soc. Rev. 2008, 37, 320.
Ir3+
Asc
O
O
photocatalytic
*Ir3+
SET
cycle
N
N
DAsc
N
base
N
Ir4+
Ph
1a
SET
Ph
1a'
O
O
12 (a) J. A. Erickson, J. I. Mcloughlin, J. Org. Chem. 1995, 60, 1626.
(b) G. M. Blackburn, D. A. England, F. Kolkmann, J. Chem. Soc.
Chem. Commun. 1981, 930.
2a
radical-radical
coupling
NH
N
N
O
N
B
then
H
CF2CHOOEt
A
Ph
OEt
Ph
13 (a) P. Xu, W. Li, J. Xie, C. Zhu, Acc. Chem. Res. 2018, 51, 484;
(b) Z. B. Yin, J. H. Ye, W. J. Zhou, Y. H. Zhang, L. Ding, Y. Y. Gui,
S. S. Yan, J. Li, D. G. Yu, Org. Lett. 2018, 20, 190. (c) L. C. Yu, J.
W. Gu, S. Zhang, X. J. Zhang, Org. Chem. 2017, 82, 3943. (d)
D. E. Yerien, S. Barata-Vallejo, A. Postigo, Chemistry 2017, 23,
14676; (e) P. Xu, G. Q. Wang, Y. C. Zhu, W. P. Li, Y. X. Cheng,
S. H. Li, C. J. Zhu, Angew. Chem. Int. Ed. Engl. 2016, 55, 2939.
14 (a) T. Koike, M. Akita, Inorg. Chem. Front. 2014, 1, 562; (b) T.
Koike, M. Akita, Acc. Chem. Res. 2016, 49, 1937.
15 CCDC 1858543 for 3a, CCDC 1858544 for 3v, and CCDC
1877660 for 3x, see the ESI† for details.
16 (a) F. P. Crisostomo, T. Martin, R. Carrillo, Angew. Chem. Int.
Ed. Engl. 2014, 53, 2181; (b) B. Majhi, D. Kundu, B. C. Ranu, J.
Org. Chem. 2015, 80, 7739; (c) M. J. Bu, G. P. Lu, C. Cai, Org.
Chem. Front. 2016, 3, 630.
F
F
3a
In summary, we successfully developed a visible-light photoredox
catalyzed radical-radical cross-coupling reaction between N, N'-
cyclicazomethine imines and BrCF2X, furnishing difluorinated 3-
pyrazolidinone scaffolds in good to excellent yields under mild
conditions. Moreover, the wide tolerance of functional groups and
high synthetic efficiency of the developed protocol would enable its
practical applications in drug discovery. Furthermore, this work
uncovered the hidden potentials of N, N'-cyclicazomethine imines in
visible-light photocatalytic transformations, which would inspire the
broad exploitation of synthetic utilizations.
4 | Chem. Commun., 2018, 00,
This journal is © The Royal Society of Chemistry 2018
Please do not adjust margins