Published on Web 02/02/2008
Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond
Activation: Expanded Scope through Mechanistic Insight
Jared C. Lewis, Ashley M. Berman, Robert G. Bergman,* and Jonathan A. Ellman*
Department of Chemistry, UniVersity of California and DiVision of Chemical Sciences,
Lawrence Berkeley National Laboratory, Berkeley, California, 94720
Received July 18, 2007; E-mail: jellman@berkeley.edu; rbergman@berkeley.edu
Abstract: A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of
pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl
bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using
Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-
tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active
yet thermally stable arylation catalyst, is essential to the success of this method. By using the
tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a
glovebox without purification of reagents or solvent. The reactions are also conducted in THF or dioxane,
which greatly simplifies product isolation relative to most other methods for direct arylation of azoles
employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor
to obtain excellent product yields in 2 h.
electron-rich substrates,6 or C-H bond acidity7 to selectively
Introduction
The direct arylation of privileged heteroarenes1 provides a
highly efficient means to synthesize functional biaryl compounds
utilized extensively throughout the pharmaceutical and materials
industries.2 This approach eliminates the need for the organo-
metallic starting materials required in traditional cross-coupling
methods,3 and over the past several years a number of reactions
that exploit directing groups,4 repulsive steric interactions,5
activate and functionalize a specific C-H bond with a transition-
metal catalyst have been developed. When applicable to a
substrate class, these methods reduce reaction byproducts,
increase the number of available substrates, and decrease the
synthetic effort required for formation of the desired C-C bond.
Our group recently described a Rh-catalyzed arylation method
in which mixtures of endo- and exo-9-cyclohexylbicyclo-[4.2.1]-
9-phosphanonane (cyclohexylphobane) served as highly active
ligands for the direct arylation of a variety of heterocycles using
aryl bromides (eq 1).8 Experimental and computational studies
on the heterocycle activation step of this reaction provided
(1) This area has enjoyed explosive growth, so only references from the past
five years are listed. For a nice method utilizing aryl chlorides, see: (a)
Chion, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. Direct arylation of
electron-rich heterocycles is described, but unprotected N-H azoles were
not tolerated, and overarylation was observed in some cases. See references
therein for previous scattered examples utilizing aryl chlorides. For examples
using aryl bromides, see: (b) Bellina, F.; Calandri, C.; Cauteruccio, S.;
Rossi, R. Tetrahedron 2007, 63, 1970 (three examples, 2 equiv of CuX
required). (c) Cerna, I.; Pohl, R.; Kepetarova, B.; Hocek, M. Org. Lett.
2006, 8, 5389 (one example). (d) Pariseien, M.; Valette, D.; Fagnou, K. J.
Org. Chem. 2005, 70, 7578 (six examples). (e) Alagille, D.; Baldwin, R.
M.; Tamagnan, G. D. Tetrahedron Lett. 2005, 46, 1349 (electron-rich aryl
bromides were coupled with benzothiazole and benzoxazole). (f) Rieth, R.
D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P. Org. Lett. 2004, 6, 3981
(stoichiometric metalation of pyrrole required). (g) Park, C.-H.; Ryabova,
R.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159
(only indolizine arylation reported). (h) Mori, A.; Sekiguchi, A.; Masui,
K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am.
Chem. Soc. 2003, 125, 1700 (one example). (i) Yokooji, A.; Okazawa, T.;
Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2003, 59, 5685 (thiazole
arylation). (j) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Javadi,
G. J.; Cai, D.; Larsen, R. D. Org. Lett. 2003, 5, 4835 (imidazo[1,2-a]-
pyridine arylation). (k) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.;
Tymoschenko, M. F. Org. Lett. 2003, 5, 310 (furan and thiophene arylation).
(l) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc.
2002, 124, 5286 (thiazole multiple arylation). (m) McClure, S. M.; Glover,
B.; McSorley, E.; Millar, A.; Osterhout, M. H.; Roschangar, F. Org. Lett.
2001, 3, 1677 (two examples of furan arylation). For a significant recent
example utilizing aryl iodides and Cu catalysis see: (n) Do, H.-Q.; Daugulis,
O. J. Am. Chem. Soc. 2007, 129, 12404.
(3) The importance of modern cross-coupling methods, particularly the Suzuki
reaction, for the formation of aryl-aryl bonds cannot be overstated. For
recent developments, see: (a) Billingsley, K.; Buchwald, S. L. J. Am. Chem.
Soc. 2007, 129, 3358. (b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. (c) Littke, A. F.; Dai,
C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
(4) (a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.
(b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem.
Soc. 2005, 127, 7330. (c) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.;
Ellman, J. A. J. Org. Chem. 2005, 70, 6775. (d) Kakiuchi, F.; Murai, S.
Acc. Chem. Res. 2002, 35, 826.
(5) (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000,
287, 1995. (b) Cho, J.-Y.; Iverson, C. N.; Smith, M. R. J. Am. Chem. Soc.
2000, 122, 12868. (c) Ishiyama, T.; Takagi, J.; Kousaku, I.; Miyaura, N.;
Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 124, 390.
(6) The vast majority of methods for heterocycle arylation falls into this
category.1 In addition, see: (a) Tunge, J. A.; Foresee, L. N. Organometallics
2006, 24, 6440. (b) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am.
Chem. Soc. 2006, 128, 11748. (c) Ferreira, E. M.; Stoltz, B. M. J. Am.
Chem. Soc. 2003, 125, 9578. (d) Jia, C. G.; Piao, D. G.; Oyamada, J. Z.;
Lu, W. J.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992.
(7) (a) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M.
J. Am. Chem. Soc. 2006, 128, 1066. (b) Lafrance, M.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 16496. (c) Lafrance, M.; Shore, D.; Fagnou, K.
Org. Lett. 2006, 8, 5097. (d) Lafrance, M.; Rowley, C. N.; Woo, T. K.;
Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754. (e) Stuart, D. R.; Fagnou,
K. Science 2007, 316, 1172.
(2) (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol.
Chem. 2006, 4, 2337. (b) Hashimoto, H.; Maeda, K.; Ozawa, K.; Haruta,
J.; Wakitani, K. Bioorg. Med. Chem. Lett. 2002, 12, 65. (c) Sisko, J.;
Kassick, A. J.; Mellinger, M.; Filan, J. J.; Allen, A.; Olsen, M. A. J. Org.
Chem. 2000, 65, 1516 and references therein. (d) Roncali, J. Chem. ReV.
1997, 97, 173.
(8) Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int.
Ed. 2006, 118, 1619.
9
10.1021/ja0748985 CCC: $40.75 © 2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 2493-2500
2493