135
[4] Ebert B., Wong E.H.F., Krogsgaard-Larsen P., Eur. J. Pharmacol.
208 (1991) 49–52.
binding) or in the presence of the competing drug for
30 min at 25 °C. The incubation was terminated by
filtration over GF/B (Whatman) glass fibre presoaked in
0.05% polyethyleneimine (Aldrich) with an MR24 Bran-
del cell harvester. The filters were rinsed three times with
5 mL 50 mM NaCl, Tris HCl 10 mM, pH 7.7 buffer and
the radioactivity retained was counted in 3.5 mL ACS
(Amersham) with an Excel 1410 (LKB) liquid scintilla-
tion spectrophotometer. The non-specific binding was
determined in parallel experiments in the presence of 100
µM unlabelled TCP.
[5] Berman F.W., Murray T.F., J. Biochem. Toxicol. 11 (1996)
217–226.
[6] Choi D.W., Cerebrovasc. Brain Metab. Rev. 2 (1990) 105–147.
[7] Hamon J., Vignon J., Kamenka J.M., Eur. J. Med. Chem. 31 (1996)
489–495.
[8] Vignon J., Chaudieu I., Allaoua H., Journod L., Javoy-Agid F.,
Agid Y., Chicheportiche R., Life Sci. 45 (1989) 2547–2555.
[9] Bruylants P., Bruylants P., Bull. Soc. Chim. Belg. 33 (1924)
467–478; Bull. Soc. Chim. Belg. 35 (1926) 139–154.
[10] Geneste P., Kamenka J.M., Dessapt P., Bull. Soc. Chim. Fr. 3& 4
II (1980) 186–191.
[11] Ilagouma A.T., Dornand J., Liu C.F., Zénone F., Mani J.C.,
Kamenka J.M., Eur. J. Med. Chem. 25 (1990) 609–615.
5.2.2. Data analysis
In each experiment, values are the mean of three
independent determinations. Each experiment was per-
formed 3–5 times. The data from competition experi-
ments were first analyzed by Hill’s representation accord-
ing to a single-site model, then by a non linear regression
method (Marquardt–Levenberg algorithm) according to a
two-site model using the Sigmaplott 4 software (Jandel).
The two-site interaction was represented by:
[12] Minato A., Tarrao K., Hayashi T., Susuki K., Kumada M.,
Tetrahedron Lett. 52 (1981) 5319–5322.
[13] Coderc E., Martin-Fardon R., Vignon J., Kamenka J.M., Eur. J.
Med. Chem. 28 (1993) 893–898.
[14] Marwaha J., Palmer M., Hoffer B., Freedman R., Rice K.C., Paul
S., Skolnick P., Arch. Pharmacol. 315 (1981) 203–209.
[15] Coderc E., Cerruti P., Vignon J., Rouayrenc J.F., Kamenka J.M.,
Eur. J. Med. Chem. 30 (1995) 463–470.
[16] Geneste P., Kamenka J.M., Org. Magn. Res. 7 (1975) 579–584.
[LB] = (B1 + B2) – {([I] × B1/(IC501 + [I]))
[17] Kamenka J.M., Geneste P., In: Domino E.F. (Ed.), PCP (Phencyc-
lidine): Historical and Current Perspectives, NPP Books, Ann Arbor, 1981,
pp. 47–82.
+ ([I] × B2/(IC502 + [I]))}
where [LB] was the percentage of radioligand concen-
tration specifically bound, [I] the competitor concentra-
tion, B1 and B2 the percentage of each binding site, IC501
and IC502 the concentrations of unlabeled competitor that
inhibited 50% of specific [3H]TCP binding on specified
sites. Two constraints were fixed: (i) IC501, IC502, B1, B2
> 0; (ii) 95% < (B1 + B2) < 105% because of the
uncertaincy on the total binding (10%). Experimental
results were submitted to an ANOVA test followed by a
Durbin–Watson test. The two-site model was preferred
when it produced a significant reduction in the sum of
squares (P < 0.05, Student’s t-test) and when the Durbin-
–Watson coefficient was closer to 2 than in the single-site
model and comprised between 1.5 and 2.5.
[18] Manoharan M., Eliel E.L., Carrol F.I., Tetrahedron Lett. 24 (1983)
1855–1858.
[19] Manoharan M., Eliel E.L., Kanan W., Tetrahedron Lett. 25 (1984)
3267–3268.
[20] Michaud M., Warren H., Drian M.J., Rambaud J., Cerruti P.,
Nicolas J.P., Vignon J., Privat A., Kamenka J.M., Eur. J. Med. Chem. 29
(1994) 869–876.
[21] Geneste P., Kamenka J.M., Ung S.N., Herrmann P., Goudal R.,
Trouiller G., Eur. J. Med. Chem. 14 (1979) 301–308.
[22] Young T.E., Heitz L.J., J. Org. Chem. 38 (1973) 1562–1566.
[23] Baty J.D., Jones G., Moore C., J. Chem. Soc. (C) (1967)
2645–2647.
[24] Pouchert C.J., Behnke J. (Eds.), The Aldrich library of 13C and 1H
FT NMR Spectra, Vol. 1, Aldrich Chemical Company, 1993, pp. 235–236.
[25] Conley E.C., In: Conley E.C. (Ed.), The Ion Channel Facts Book
I, Academic Press, New York, 1996, pp. 140–233.
[26] Sekiguchi M., Okamoto K., Sakai Y., J. Neurosci. 10 (1990)
2148–2155.
Acknowledgements
[27] Yamakura T., Mori Y., Masaki H., Shimoji K., Mishima M.,
Neuroreport 4 (1993) 687–690.
This work was supported by D.R.E.T. (grant 94/141).
Thanks are due to M. Michaud for her excellent technical
assistance.
[28] Chaudieu I., Vignon J., Chicheportiche M., Kamenka J.M., Trouil-
ler G., Chicheportiche R., Pharmacol. Biochem. Behav. 32 (1989) 699–705.
[29] Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N.,
Nakanishi S.,, Nature 354 (1991) 31–37.
[30] Durand G.M., Bennett M.V.L., Zukin R.S., Proc. Natl. Acad. Sci.
USA 90 (1993) 6731–6735.
References
[31] Widdowson P.S., Trainor A., Lock E.A., J. Neurochem. 64 (1995)
651–661.
[1] Vignon J., Chicheportiche R., Chicheportiche M., Kamenka J.M.,
Geneste P., Lazdunski M., Brain Res. 280 (1983) 194–197.
[32] Lynch D.R., Lawrence J.J., Lenz S., Anegawa N.J., Dichter M.,
Pritchett D.B., J. Neurochem. 64 (1995) 1462–1467.
[2] Wong E.H.F., Kemp J.A., Priestley T., Knight A.R., Woodruff
G.N., Iversen L.L., Proc. Natl. Acad. Sci. USA 83 (1986) 7104–7108.
[33] Eiden F., Schmidt M., Buchborn H., Arch. Pharmacol. 320 (1987)
348–361.
[3] Vignon J., Privat A., Chaudieu I., Thierry A., Kamenka J.M.,
Chicheportiche R., Brain Res. 378 (1986) 133–141.