(E)-methyl 4-(4-acetoxystyryl)benzoate (7k). Mp: 189–190 ◦C
(from DCM, white amorphous solid). IR (film) nmax 3022, 2954,
1761, 1718, 1287, 1112. H NMR (CDCl3, 300 MHz): dH 8.07–
7.99 (m, 2H, H8), 7.61–7.50 (m, 4H, H2–3), 7.19 (d, J = 16.5 Hz,
1H, H5), 7.11 (dt, J = 2.0 Hz, J = 8.8 Hz, 2H, H9), 7.06 (d,
J = 16.5 Hz, 1H, H6), 3.92 (s, 3H, CH3O), 2.31 (s, 3H, H12).
13C NMR (CDCl3, 75 MHz): dC 169.3, 166.7, 150.4, 141.5, 134.4,
130.0, 129.9, 128.9, 127.6, 126.5, 126.2, 121.8, 52.0, 21.0. HRMS
(ESI) m/z 319.0936 [(M + Na+); calcd for C18H16O4: 319.0940].
7 (a) P. J. Edwards and A. I. Morrell, Curr. Opin. Drug Discovery Dev.,
2002, 5, 594–605; (b) Z. Yu and M. Bradley, Curr. Opin. Chem. Biol.,
2002, 6, 347–352; (c) B. Kundu, Curr. Opin. Drug Discovery Dev., 2003,
6, 815–826; (d) R. E. Dolle, J. Comb. Chem., 2005, 7, 739–798; (e) R. E.
Dolle, B. Le Bourdonnec, G. A. Morales, K. J. Moriarty and J. M.
Salvino, J. Comb. Chem., 2006, 8, 597–635; (f) R. E. Dolle, B. Le
Bourdonnec, A. J. Goodman, G. A. Morales, J. M. Salvino and W.
Zhang, J. Comb. Chem., 2007, 9, 855–902; (g) R. E. Dolle, B. Le
Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas and W.
Zhang, J. Comb. Chem., 2008, 10, 753–802; (h) R. E. Dolle, B. Le
Bourdonnec, A. J. Goodman, G. A. Morales, C. J. Thomas and W.
Zhang, J. Comb. Chem., 2009, 11, 739–790.
1
8 (a) A. D. Piscopio and J. E. Robinson, Curr. Opin. Chem. Biol., 2004,
8, 245–254; (b) N. Ljungdahl, K. Bromfield and K. Kann, Top. Curr.
Chem., 2007, 278, 89–134.
Conclusions
9 S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1993,
115, 9858–9859.
10 (a) M. Schuster, J. Pernerstorfer and S. Blechert, Angew. Chem., Int. Ed.
Engl., 1996, 35, 1979–1980; (b) P. G. Breed, J. A. Ramsden and J. M.
Brown, Can. J. Chem., 2001, 79, 1049–1057.
11 (a) S. Chang, Y. Na, H. J. Shin, E. Choi and L. S. Jeong, Tetrahedron
Lett., 2002, 43, 7445–7449; (b) S. A. Testero and E. G. Mata, Org. Lett.,
2006, 8, 4783–4786; (c) A. L. Garner and K. Koide, Org. Lett., 2007, 9,
5235–5238; (d) A. A. Poeylaut-Palena, S. A. Testero and E. G. Mata,
J. Org. Chem., 2008, 73, 2024–2027; (e) A. J. Brouwer, R. C. Elgersma,
M. Jagodzinska, D. T. S. Rijkers and R. M. J. Liskamp, Bioorg. Med.
Chem. Lett., 2008, 18, 78–84; (f) A. A. Poeylaut-Palena and E. G. Mata,
ARKIVOC, 2010, iii, 216–227.
This study demonstrates that the success of the olefin cross
metathesis on solid support depends on many different factors
influencing many metathetic events taking part during the reac-
tion. Thus, flexible and long support linkers open the door to the
formation of intrasite products. Exclusive obtention of the CM
product can only be achieved if the new double bond is resistant
to further metathetic events, while highly active non-immobilized
olefins gave mostly a mixture of the desired CM product and the
site–site by-product. Virtually unreactive soluble olefins gave only
the intrasite by-product. If the intrasite reaction is not possible, the
role of the homodimerization of the non-immobilized olefin can
be crucial. If the homodimer is less reactive than its monomer,
reaction outcome depends on the homodimerization rate. But
homodimerization rate, of course, depends on the precatalyst used
and the reaction conditions. This means that just the use of a
more reactive precatalyst or improved reaction conditions does not
always give a better yield of the desired product. Aside from that,
it is clear that optimized conditions give excellent results in short
reaction time (25 min) and, particularly, microwave irradiation
offers an interesting alternative to achieve good results in a very
practical way and with a more efficient use of the energy. In
summary, we think that this comprehensive analysis expands our
knowledge on the solid-phase cross metathesis, an underdeveloped
methodology, in order to exploit its undoubted potential.
12 M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1,
953–956.
13 (a) J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus and A. H. Hoveyda,
J. Am. Chem. Soc., 1999, 121, 791–799; (b) S. B. Garber, J. S. Kingsbury,
B. L. Gray and A. H. Hoveyda, J. Am. Chem. Soc., 2000, 122, 8168–
8179; (c) D. G. Gillingham, O. Kataoka, S. B. Garber and A. H.
Hoveyda, J. Am. Chem. Soc., 2004, 126, 12288–12290.
14 B. Yan, J. B. Fell and G. Kumaravel, J. Org. Chem., 1996, 61, 7467–7472.
15 A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O. Kataoka,
S. B. Garber, J. S. Kingsbury and J. P. A. Harrity, Org. Biomol. Chem.,
2004, 2, 8–23, and references cited therein.
16 (a) R. Shi, F. Wang and B. Yan, Int. J. Pept. Res. Ther., 2007, 13, 213–
219; (b) H. E. Blackwell, P. A. Clemons and S. L. Schreiber, Org. Lett.,
2001, 3, 1185–1188.
17 S. Rana, P. White and M. Bradley, J. Comb. Chem., 2001, 3, 9–15.
18 A similar experience using immobilized olefin 4 gave no site-site
product, with quantitative recovery of the starting material.
19 (a) A. Loupy, in Microwaves in Organic Synthesis, 2nd edn, Wiley-VCH,
Weinheim, 2006; (b) V. Santagada, E. Perissutti and G. Caliendo, Curr.
Med. Chem., 2002, 9, 1251–1283; (c) C. O. Kappe, Angew. Chem., Int.
Ed., 2004, 43, 6250–6284; (d) B. L. Hayes, Aldrichim. Acta, 2004, 37,
66–77; (e) C. O. Kappe and D. Dallinger, Mol. Diversity, 2009, 13,
71–193.
20 N. Kuhnert, Angew. Chem., Int. Ed., 2002, 41, 1863–1866.
21 (a) W. H. Moos, C. R. Hurt and G. A. Morales, Mol. Diversity, 2009, 13,
241–245; (b) J. P. Kennedy, L. Williams, T. M. Bridges, R. N. Daniels,
D. Weaver and C. W. Lindsley, J. Comb. Chem., 2008, 10, 345–354.
22 (a) T. Boddaert, Y. Coquerel and J. Rodriguez, Adv. Synth. Catal., 2009,
351, 1744–1748; (b) P. S. Marinec, C. G. Evans, G. S. Gibbons, M. A.
Tarnowski, D. L. Overbeek and J. E. Gestwicki, Bioorg. Med. Chem.,
2009, 17, 5763–5768; (c) T. Boddaert, Y. Coquerel and J. Rodriguez,
C. R. Chim., 2009, 12, 872–875; (d) Y. Coquerel and J. Rodriguez,
Eur. J. Org. Chem., 2008, 1125–1132, and references cited therein.
23 (a) F. C. Bargiggia and W. V. Murray, J. Org. Chem., 2005, 70, 9636–
9639; (b) A. Michaut, T. Boddaert, Y. Coquerel and J. Rodriguez,
Synthesis, 2007, 2867–2871.
Acknowledgements
Financial support from Consejo Nacional de Investigaciones
Cient´ıficas y Te´cnicas (CONICET) (Argentina); Agencia Na-
cional de Promocio´n Cient´ıfica y Tecnolo´gica (Argentina); Fun-
dacio´n Prats (Argentina), and Universidad Nacional de Rosario
(Argentina) is gratefully acknowledged. AAPP thanks CONICET
for fellowships.
Notes and references
1 S. A. Testero and E. G. Mata, J. Comb. Chem., 2008, 10, 487–497.
2 (a) R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413–4450;
(b) A. Fu¨rstner, Angew. Chem., Int. Ed., 2000, 39, 3012–3043; (c) S. J.
Connon and S. Blechert, Angew. Chem., Int. Ed., 2003, 42, 1900–1923;
(d) K. C. Nicolaou, P. G. Burger and D. Sarlah, Angew. Chem., Int. Ed.,
2005, 44, 4490–4527.
3 J.-L. He´risson and Y. Chauvin, Makromol. Chem., 1971, 141, 161–164.
4 A. K. Chatterjee, T. L. Choi, D. P. Sanders and R. H. Grubbs, J. Am.
Chem. Soc., 2003, 125, 11360–11370.
5 For some examples, see: (a) K. Ferre´-Filmon, L. Delaude, A. Demon-
ceau and A. F. Noels, Eur. J. Org. Chem., 2005, 3319–3325; (b) J. Velder,
S. Ritter, J. Lex and H.-G. Schmalz, Synthesis, 2006, 273–278.
6 J. H. Cho and B. M. Kim, Org. Lett., 2003, 5, 531–533.
24 Interestingly, under microwave irradiation, coupling between resin-
bound olefin 11 and active soluble olefin (5c) using reactive precatalysts
(2 or 3) led to a mixture of at least eight products due to the double bond
isomerization in both the desired product and the intrasite by-product,
that initiates a new series of olefin metathesis.
25 (a) M. Hosseini, N. Stiasni, V. Barbieri and C. O. Kappe, J. Org. Chem.,
2007, 72, 1417–1424; (b) M. A. Herrero, J. M. Kremsner and C. O.
Kappe, J. Org. Chem., 2008, 73, 36–47.
26 B. Bacsa, K. Horva´ti, S. Bo˜sze, F. Andreae and C. O. Kappe, J. Org.
Chem., 2008, 73, 7532–7542.
27 K. Mori, Tetrahedron, 2009, 65, 3900–3909.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3947–3956 | 3955
©