Total Synthesis of 3-Oxo- and 3β-Hydroxytauranin
1645–1648; c) K. C. Nicolaou, K. Koide, M. E. Bunnage,
Chem. Eur. J. 1995, 1, 454–466; d) R. F. Cunico, L. Bedell, J.
Org. Chem. 1980, 45, 4797–4798; e) S. I. Odejinmi, D. F.
Wiemer, Tetrahedron Lett. 2005, 46, 3871–3874.
at 0 °C for 1 h. Then the mixture was diluted with hexanes (90 mL)
and filtered through a pad of silica (h = 4 cm, ø = 3 cm). The
quinones stayed at the baseline and were separated via Dry Column
Vacuum Chromatography (DCVC, silica gel, 5% to 15% Me2CO/
hexanes) yielding the desired ketone 22 (44.9 mg, 84.9 μmol, 61%,
81% brsm) besides recovered starting material 21 (18.7 mg,
35.2 μmol). RfЈ = 0.34 (15% Me2CO/CHCl3). [α]2D3 = –97 (c = 0.13,
CHCl3). 1H NMR (500 MHz, CDCl3, 298 K): δ = 0.95 (s, 3 H),
1.03 (s, 3 H), 1.06 (d, J = 6.9 Hz, 18 H), 1.10 (s, 3 H), 1.11–1.19
(m, 3 H), 1.49 (dddd, J = 13.2, 13.2, 13.2, 4.2 Hz, 1 H), 1.64–1.72
(m, 2 H), 1.94–2.01 (m, 2 H), 2.10 (ddd, J = 13.2, 6.6, 3.9 Hz, 1
H), 2.36 (ddd, J = 12.7, 3.8, 2.5 Hz, 1 H), 2.41–2.48 (m, 2 H), 2.50
(dd, J = 13.9, 2.7 Hz, 1 H), 2.65 (ddd, J = 15.2, 12.4, 6.6 Hz, 1 H),
2.75 (dd, J = 13.9, 11.0 Hz, 1 H), 4.62 (d, J = 2.4 Hz, 2 H), 4.76
(d, J = 0.7 Hz, 1 H), 4.81 (d, J = 0.7 Hz, 1 H), 6.75 (t, J = 2.4 Hz,
1 H), 6.95 (s, 1 H) ppm. 13C NMR (125 MHz, CDCl3, 298 K): δ =
11.8, 13.7, 17.9, 19.3, 21.7, 25.1, 26.0, 34.8, 37.2, 37.7, 39.7, 47.7,
53.4, 55.0, 58.8, 108.0, 121.0, 133.2, 144.0, 147.4, 151.0, 182.9,
187.8, 217.0 ppm. ESI-HRMS: calcd. for [C31H48O5Si + H]+: m/z
= 529.3344; found m/z = 529.3346.
[4]
a) E. Negishi, H. Matsushita, N. Okukado, Tetrahedron Lett.
1981, 22, 2715–2718; b) B. H. Lipshutz, G. Bulow, R. F. Lowe,
K. L. Stevens, J. Am. Chem. Soc. 1996, 118, 5512–5513; c)
B. H. Lipshutz, G. Bulow, R. F. Lowe, K. L. Stevens, Tetrahe-
dron 1996, 52, 7265–7276; d) B. H. Lipshutz, G. Bulow, F. Fer-
nandez-Lazaro, S.-K. Kim, R. Lowe, P. Mollard, K. L. Stevens,
J. Am. Chem. Soc. 1999, 121, 11664–11673; e) B. H. Lipshutz,
P. Mollard, S. S. Pfeiffer, W. Chrisman, J. Am. Chem. Soc. 2002,
124, 14282–14283; f) B. H. Lipshutz, B. Amorelli, J. Am. Chem.
Soc. 2009, 131, 1396–1397; g) B. H. Lipshutz, A. Lower, V.
Berl, K. Schein, F. Wetterich, Org. Lett. 2005, 7, 4095–4097.
a) A. Bernet, K. Seifert, Helv. Chim. Acta 2006, 89, 784–796;
b) J. Clayden, M. N. Kenworthy, M. Helliwell, Org. Lett. 2003,
5, 831–834; c) G. Blame, G. Fournet, J. Gore, Tetrahedron Lett.
1986, 27, 1907–1908.
a) J. Hooz, J. Cabezas, S. Musmanni, J. Calzada, Org. Synth.
1990, 69, 120; Org. Synth., Coll. Vol. 1993, 8, 226; b) E. Negi-
shi, C. L. Rand, K. P. Jadhav, J. Org. Chem. 1981, 46, 5041–
5044; c) E. Alonso, D. J. Ramón, M. Yus, Tetrahedron 1997,
53, 14355–14368.
[5]
[6]
3-Oxotauranin (1): To
a solution of quinone 22 (43.2 mg,
81.1 μmol) in THF (5 mL) TBAF (80.0 mg, 286 μmol) was added
and the reaction mixture was stirred under an inert gas atmosphere
at room temperature for 30 min. The reaction mixture was parti-
tioned between MTBE (50 mL) and half saturated NH4Cl (25 mL)
and the aqueous phase was extracted with MTBE (25 mL). After
the combined organic phases were washed with brine and dried
with MgSO4 the solvent was evaporated. The crude product was
purified by column chromatography (silica gel, 5% MeOH/CHCl3)
to obtain 3-oxotauranin (1; 28.0 mg, 75.2 μmol, 93%). RfЈ = 0.22
(5% MeOH/CHCl3). [α]2D3 = –160 (c = 0.13, CHCl3). 1H NMR
(500 MHz, CDCl3, 298 K): see supplement. 13C NMR (125 MHz,
CDCl3, 298 K): see supplement. ESI-HRMS: calcd. for
[C22H28O5 + H]+: m/z = 373.2010; found m/z = 373.2009.
[7]
a) C. A. Tolman, Chem. Rev. 1977, 77, 313–348; b) E. Negishi,
N. Okukado, A. O. King, D. E. van Horn, B. I. Spiegel, J. Am.
Chem. Soc. 1978, 100, 2254–2256; c) M. Qian, Z. Huang, E.
Negishi, Org. Lett. 2004, 6, 1531–1534; d) M. A. Pena, J. P.
Sestelo, L. A. Sarandeses, Synthesis 2005, 485–492; e) Y.-C. Xu,
J. Zhang, H.-M. Sun, Q. Shen, Y. Zhang, Dalton Trans. 2013,
42, 8437–8445; f) C. J. O’Brien, E. A. B. Kantchev, C. Valente,
N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G.
Organ, Chem. Eur. J. 2006, 12, 4743–4748; g) C. Valente, M. E.
Belowich, N. Hadei, M. G. Organ, Eur. J. Org. Chem. 2010,
4343–4354.
[8]
a) H. C. Kolb, M. S. van Nieuwenhze, K. B. Sharpless, Chem.
Rev. 1994, 94, 2483–2547; b) G. Vidari, A. Dapiaggi, G.
Zanoni, L. Garlaschelli, Tetrahedron 1993, 34, 6485–6488; c)
E. J. Corey, M. C. Noe, S. Lin, Tetrahedron Lett. 1995, 36,
8741–8744; d) H. Lin, S. S. Pochapsky, I. J. Krauss, Org. Lett.
2011, 13, 1222–1225; e) an improved, higher yielding prepara-
tion of the precursor O6Ј-(4-heptyl)dihydrocupreidine can be
found in the supplement; f) J. S. M. Wai, I. Marko, J. S.
Svendsen, M. G. Finn, E. N. Jacobsen, K. B. Sharpless, J. Am.
Supporting Information (see footnote on the first page of this arti-
cle): Revised NMR-assignments of 3β-hydroxytauranin (2) and 3-
1
oxotauranin (1), figures of H and 13C NMR spectra of products,
the determination of the enantiomeric purity of glycol 15, and syn-
thesis of O6Ј-(4-heptyl)dihydrocupreidine.
1
Chem. Soc. 1989, 111, 1123–1125; g) determined by H-NMR
using (2-formylphenyl)boronic acid and (R)- and (S)-α-methyl-
benzylamine according to A. M. Kelly, Y. Pérez-Fuertes, J. S.
Fossey, S. L. Yeste, S. D. Bull, T. D. James, Nat. Protoc. 2008,
3, 215–219.
Acknowledgments
Support of this research by a scholarship of the Dr. Hans M. Fi-
scher Foundation is gratefully acknowledged. The authors would
like to thank Prof. Dr. J. Woodring from the University of Bayreuth
for correcting the English of the manuscript.
[9]
a) J. Justicia, A. Rosales, E. Buñuel, J. L. Oller-Lopez, M. Val-
divia, A. Haïdour, J. E. Oltra, A. F. Barrero, D. J. Cárdenas,
J. M. Cuerva, Chem. Eur. J. 2004, 10, 1778–1788; b) A. F. Bar-
rero, M. M. Herrador, J. F. Qílez del Moral, P. Arteaga, J. F.
Arteaga, M. Piedra, E. M. Sánchez, Org. Lett. 2005, 7, 2301–
2304; c) J. Justicia, J. E. Oltra, A. F. Barrero, A. Guadano, A.
González-Coloma, J. M. Cuerva, Eur. J. Org. Chem. 2005, 712–
718; d) V. Domingo, L. Silva, H. R. Diéguez, J. F. Arteaga, J. F.
Quílez del Moral, A. F. Barrero, J. Org. Chem. 2009, 74, 6151–
6156; e) M. D’Acunto, C. Della Monica, I. Izzo, L. De Petro-
cellis, V. di Marzo, A. Spinella, Tetrahedron 2010, 66, 9785–
9789; f) A. F. Barrero, J. F. Quílez del Moral, E. M. Sánchez,
J. F. Arteaga, Eur. J. Org. Chem. 2006, 1627–1641; g) J. Justicia,
Á. de Cienfuegos, A. G. Campaña, D. Miguel, V. Jaoby, A.
Gansäuer, J. M. Cuerva, Chem. Soc. Rev. 2011, 40, 3525–3537;
h) T. Jiménez, S. P. Morcillo, A. Martín-Lasanta, D. Collado-
Sanz, D. J. Cárdenas, A. Gansäuer, J. Justicia, J. M. Cuerva,
Chem. Eur. J. 2012, 18, 12825–12833; i) A. Gansäuer, J. Jus-
ticia, A. Rosales, D. Worgull, B. Rinker, J. M. Cuerva, J. E.
Oltra, Eur. J. Org. Chem. 2006, 4115–4127; j) A. Rosales, J.
Munoz-Bascon, E. Roldan-Molina, N. Rivas-Bascon, N. M.
[1] a) P. Proksch, Dtsch. Apoth. Ztg. 1994, 134 (51/52), 19–20, 23–
27, 30–34; b) S. Loya, R. Tal, Y. Kashman, A. Hizi, Antimicrob.
Agents Chemother. 1990, 34, 2009–2012; c) M.-L. Bourjouet-
Kondracki, A. Longeor, R. Morel, M. Guyot, Int. Immunphar-
mac. 1991, 13, 393–399; d) Y. Li, Y. Zhang, X. Shen, Y. W.
Guo, Bioorg. Med. Chem. Lett. 2009, 19, 390–392; e) T. Laube,
W. Beil, K. Seifert, Tetrahedron 2005, 61, 1141–1148; f) T.
Laube, A. Bernet, H.-M. Dahse, I. D. Jacobsen, K. Seifert, Bio-
org. Med. Chem. 2009, 17, 1422–1427; g) E. M. K. Wijeratne,
P. A. Paranagama, M. T. Marron, M. K. Gunatilaka, A. E. Ar-
nold, A. A. L. Gunatilaka, J. Nat. Prod. 2008, 71, 218–222; h)
M. Göhl, K. Seifert, Eur. J. Org. Chem. 2014, 6975–6982.
[2] M. Gordaliza, Mar. Drugs 2012, 10, 358–402.
[3] a) H. E. Pelish, N. J. Westwood, Y. Feng, T. Kirchhausen,
M. D. Shair, J. Am. Chem. Soc. 2001, 123, 6740–6741; b) Z.
Bo, A. Schäfer, P. Franke, A. D. Schlüter, Org. Lett. 2000, 2,
Eur. J. Org. Chem. 2015, 6249–6258
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6257