Journal of the American Chemical Society
Page 4 of 5
ris (UT) for continuous valuable suggestions. David Arm-
1
2
3
4
5
6
7
8
strong (UT) is acknowledged for help with DFT computa-
tions. Computations were performed on the GPC supercom-
puter at the SciNet HPC Consortium. SciNet is funded by the
Canada Foundation for Innovation (CFI), NSERC, the Gov-
ernment of Ontario, Fed Dev Ontario, and UT. R.W.S.
thanks NSERC for discovery/accelerator grants and the Uni-
versity of Windsor for a 50th Anniversary Jubilee award. He
also thanks NSERC, the CFI, the Ontario Ministry of Re-
search and Innovation and the University of Windsor for
supporting the solid-state NMR facilities. C. A. O. thanks the
Ontario Ministry of Education and Training for graduate
scholarships.
Transition Metals’ in Hydrogen-Transfer Reactions (eds J. T.
Hynes, J. P. Klinman, H.ꢀH. Limbach and R. L. Schowen),
WileyꢀVCH, Weinheim, Germany. (b) Chinn, M. S.; Heiꢀ
nekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166. (c) Facey,
G. A.; Fong, T. P.; Gusev, D.; Macdonald, P. M.; Morris, R.
H.; Schlaf, M.; Xu, W. Can. J. Chem. 1999, 77, 1899. See (a)
above also for polyhydride systems with very rapid interconꢀ
version between MꢀH and Mꢀ(H2) hydrogens.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15 Goel, A. B.; Goel S. Inorg. Chim. Acta 1982, 65, L77.
16
A previous room temperature structure determination
REFERENCES
showed the same crystalline phase (just different orientaꢀ
tion of unit cell chosen: P21/c instead of P21/n) but the hyꢀ
dride positions were not detected: Ferguson, G.; Siew, P.
Y.; Goel, A. B. J. Chem. Res.(S) 1979, 362.
17
Robertson, G. B.; Tucker, P. A.; Wickramasinghe, W. A.
1 Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew.
Chem. Int. Ed. 2000, 39, 3348.
Aust. J. Chem. 1986, 39, 1495.
18
Owston, P. G.; Partridge, J. M.; Rowe, J. M. Acta Cryst.
2
1960, 13, 246.
Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem.
19
Albinati, A.; Bracher, G.; Carmona, D.; Jans, J. H. P.;
Rev. 2005, 105, 1281.
3
Klooster, W. T.; Koetzle, T. F.; Macchioni, A.; Ricci, J. S.;
Thouvenot, R.; Venanzi, L.M. Inorg. Chim. Acta 1997, 265,
255.
Kelly, R. T.; De Silva H.; Silva, R. A. Nature 1999, 401,
150.
4
Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada,
20
Lucier, E. G.; Reidel, A. R.; Schurko, R. W. Can. J. Chem.
N.; Feringa, B. L. Nature 1999, 401, 152.
5
2011, 89, 919.
Bauer, E. B.; Ruwwe, J.; MartinꢀAlvarez, J. M.; Peters, T.
21
(a) O’Dell, L. A.; Schurko, R. W.; Chem. Phys. Lett. 2008,
B.; Bohling, J. C.; Hampel, F. A.; Szafert, S.; Lis, T; Gladysz,
464, 97ꢀ102. (b) Hamaed, H.; Ye, E.; Udachin, K.; Schurko,
R. W. J. Phys. Chem. B 2010, 114, 6014.
J. A. Chem. Commun. 2000, 2261.
6
(a) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem. Int.
22 Chandrakumar, N. Spin-1 NMR. Springer: Berlin, 1996.
Ed. 2004, 43, 5537. (b) Wang, L.; Hampel, F.; Gladysz, J. A.
Angew. Chem. Int. Ed. 2006, 45, 4372. (c) Nawara, A. J.;
Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006,
128, 4962. (d) NawaraꢀHultzsch, A. J.; Stollenz, M.;
Barbasiewicz, M.; Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh,
N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617.
23
Bakhmutov, V. I. (2002), Deuterium Spin-Lattice Relaxa-
tion and Deuterium Quadrupole Coupling Constants. In
Gielen, M.; Willem, R.; Wrackmeyer, B. (Eds.), Unusual
Structures and Physical Properties in Organometallic Chemis-
try (pp. 145ꢀ164). West Sussex, UK: Wiley & Sons.
2
24
7
A H SSNMR spectrum of nonꢀdeuterated 1 shows a
Krause, M.; Hulman, M.; Kuzmany, H; Dubay, O.; Kresse,
similar isotropic peak; also, temperature cycling of 1-D2
G.; Vietze, K; Seifert, G.; Wang, C.; Shinohara, H. Phys. Rev.
Lett. 2004, 93, 137403(4).
does not increase the amount of impurity.
25
8
While 1 is chemically stable at 295 K and below, and
Vogelsberg, C. S.; GarciaꢀGaribay, M. A. Chem. Soc. Rev.
while Xꢀray crystallography additionally indicates the same
crystalline phase at 147 K and at room temperature (this
work and Ref 16), we observed decomposition upon heatꢀ
ing to 325 K.
2012, 41, 1892.
9 Iwamura, H.; Mislow, K. Acc. Chem. Res. 1988, 21, 175.
10 (a) Khuong, T.ꢀA. V.; Nunnez, J. E.; Godinez, C. E.; Garciaꢀ
Garibay, M. A. Acc. Chem. Res. 2006, 39, 413. (b) Comotti,
A.; Bracco, S.; Ben, T.; Qiu, S.; Sozzani, P. Angew. Chem.,
Int. Ed. 2014, 53, 1043. (c) Setaka, W.; Yamaguchi, K. J. Am.
Chem. Soc. 2013, 135, 14560.
26 Vold, R. L.; Hoatson, G. L. J. Magn. Reson. 1995, 33, 57.
27
The temperatureꢀdependence of the 2H powder pattern of 1-
D2 is driven by the Boltzmann population weighting of the
slightly unequal minima, but barriers are surmounted rapidly
compared to the NMR static linewidth. This contrasts with the
more common situation where motional averaging is due to
multiple minima separated by tall energy barriers.
11
An exception is CH3 group rotation, which is rather comꢀ
monly found to have a low barrier: Wang, X.; Beckman, P. A.;
Mallory, C. W.; Rheingold, A. L.; DiPasquale, A. G.; Carroll,
P. J.; Mallory, F. B. J. Org. Chem. 2011, 76, 5170.
12 Gray, G. M.; Duffey, C. H. Organometallics 1994, 13, 1542.
13 (a) Shima, T.; Bauer. E. B.; Hampel, F.; Gladysz, J. A. Dal-
ton Trans. 2004, 1012. (b) Lewanzik, N.; Oeser, T.; Blümel,
J.; Gladysz, J. A. J. Mol. Catal. A 2006, 254, 20.
28
An attempt to improve the quality of the potential energy
landscape by adding dispersion corrections (Grimme, S.; Anꢀ
tony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132,
154104) was only partially successful: while the span deꢀ
creased (from 4.9 kcal molꢀ1 to 2.3 kcal molꢀ1), the order of the
minima switched from “one low, two high” to “two low, one
high”, inconsistent with the experimental data (a 1:n:n fit is
inferior to an n:1:1 fit (for n>1, see Fig S20 for details)).
14
Ca. 3 x larger than the H2 rotor in dihydrogen complexes, a
wellꢀrecognized class of facile rotors; see: (a) Kubas, G. J.
(2006) ‘The Extraordinary Dynamic Behavior and Reactivity
of Dihydrogen and Hydride in the Coordination Sphere of
4
ACS Paragon Plus Environment