Full Paper
Conflict of Interest
The authors declare no conflict of interest.
Keywords: Alkylidenecyclopropanes · [4+2] cycloaddition ·
DFT calculations · Water assistance · 1,3-H shift
[1] For selected reviews on ACPs, see: a) M. Lautens, W. Klute, W. Tam,
Chem. Rev. 1996, 96, 49–92; b) A. Brandi, S. Cicchi, F. M. Cordero, A. Goti,
Chem. Rev. 2003, 103, 1213–1270; c) S. Li–Xiong, S. Min, Curr. Org. Chem.
2007, 11, 1135–1153; d) A. Masarwa, I. Marek, Chem. Eur. J. 2010, 16,
9712–9721; e) H. Pellissier, Tetrahedron 2010, 66, 8341–8375; f) L. Yu, R.
Guo, Org. Prep. Proced. Int. 2011, 43, 209–259; g) B.-L. Lu, L. Dai, M. Shi,
Chem. Soc. Rev. 2012, 41, 3318–3339; h) M. Shi, J.-M. Lu, Y. Wei, L.-X.
Shao, Acc. Chem. Res. 2012, 45, 641–652; i) A. Brandi, S. Cicchi, F. M.
Cordero, A. Goti, Chem. Rev. 2014, 114, 7317–7420; j) H. Pellissier,
Tetrahedron 2014, 70, 4991–5031; k) D.-H. Zhang, X.-Y. Tang, M. Shi, Acc.
Chem. Res. 2014, 47, 913–924; l) L. Yu, M. Liu, F. Chen, Q. Xu, Org.
Biomol. Chem. 2015, 13, 8379–8392; m) L.-Z. Yu, K. Chen, Z.-Z. Zhu, M.
Shi, Chem. Commun. 2017, 53, 5935–5945; n) D. Li, W. Zang, M. J. Bird,
Figure 2. DFT calculation on reaction pathway of this work (relative Gibbs
[2] For selected articles on thermally-induced reactions of ACPs, see: a) A.
Brandi, A. Guarna, A. Goti, F. De Sarlo, Tetrahedron Lett. 1986, 27, 1727–
1730; b) X.-Y. Tang, M. Shi, J. Org. Chem. 2009, 74, 5983–5986; c) X.-Y.
Tang, M. Shi, J. Org. Chem. 2010, 75, 902–905; d) X.-Y. Tang, Y. Wei, M.
Shi, Org. Lett. 2010, 12, 5120–5123; e) L.-Z. Yu, X.-B. Hu, Q. Xu, M. Shi,
Chem. Commun. 2016, 52, 2701–2704; f) H. Zhao, Y. Xing, P. Lu, Y. Wang,
Chem. Eur. J. 2016, 22, 15144–15150.
[3] For selected articles on acid-mediated reactions of ACPs, see: a) M. Shi,
L.-X. Shao, B. Xu, Org. Lett. 2003, 5, 579–582; b) M. Shi, B. Xu, J.-W.
Huang, Org. Lett. 2004, 6, 1175–1178; c) B.-Y. Wang, J.-W. Huang, L.-P.
Liu, M. Shi, Synlett 2005, 2005, 421–424; d) M. E. Scott, Y. Bethuel, M.
Lautens, J. Am. Chem. Soc. 2007, 129, 1482–1483; e) W. Fu, X. Huang,
Tetrahedron Lett. 2008, 49, 562–565; f) S. G. Sethofer, S. T. Staben, O. Y.
Hung, F. D. Toste, Org. Lett. 2008, 10, 4315–4318; g) Q. Xiao, S. Ye, J. Wu,
Org. Lett. 2012, 14, 3430–3433; h) H. Zheng, R. J. Felix, M. R. Gagné, Org.
Lett. 2014, 16, 2272–2275; i) W. Fang, X.-Y. Tang, M. Shi, RSC Adv. 2016,
6, 40474–40479; j) W. Fang, Y. Wei, M. Shi, Chem. Commun. 2017, 53,
11666–11669; k) H.-L. Liu, Y.-C. Yuan, Y. Wei, M. Shi, Adv. Synth. Catal.
2017, 359, 3437–3443; l) Q. Wang, B. Jiang, L.-Z. Yu, Y. Wei, M. Shi, Org.
Chem. Front. 2017, 4, 1294–1298; m) L.-Z. Yu, Y. Wei, M. Shi, ACS Catal.
2017, 7, 4242–4247; n) B. Jiang, Y. Wei, M. Shi, Org. Chem. Front. 2018, 5,
2091–2097; o) M. Chen, Y. Wei, M. Shi, Org. Biomol. Chem. 2019, 17,
9990–9993.
[4] For selected articles on free radical mediated reactions of ACPs, see:
a) H. Zhou, X. Huang, W. Chen, J. Org. Chem. 2004, 69, 5471–5472; b) X.
Huang, L. Yu, Synlett 2005, 2005, 2953–2957; c) L. Yu, X. Huang, M. Xie,
Synlett 2006, 2006, 0423–0426; d) Z.-Z. Zhu, K. Chen, L.-Z. Yu, X.-Y. Tang,
M. Shi, Org. Lett. 2015, 17, 5994–5997; e) K. Chen, Z.-Z. Zhu, J.-X. Liu, X.-
Y. Tang, Y. Wei, M. Shi, Chem. Commun. 2016, 52, 350–353; f) L.-Z. Yu, Y.
Wei, M. Shi, Chem. Commun. 2016, 52, 13163–13166; g) L.-Z. Yu, Q. Xu,
X.-Y. Tang, M. Shi, ACS Catal. 2016, 6, 526–531; h) L.-Z. Yu, Z.-Z. Zhu, X.-
B. Hu, X.-Y. Tang, M. Shi, Chem. Commun. 2016, 52, 6581–6584; i) Y.-C.
Yuan, H.-L. Liu, X.-B. Hu, Y. Wei, M. Shi, Chem. Eur. J. 2016, 22, 13059–
13063; j) M.-T. Chen, X.-Y. Tang, M. Shi, Org. Chem. Front. 2017, 4, 86–90;
k) X. Fan, L.-Z. Yu, Y. Wei, M. Shi, Org. Lett. 2017, 19, 4476–4479; l) B.
Jiang, J.-X. Liu, Y. Wei, M. Shi, Org. Lett. 2018, 20, 6229–6233; m) M.
Chen, Y. Wei, M. Shi, Org. Chem. Front. 2020, 7, 374–379; n) J. Liu, Q. Li,
Y. Wei, M. Shi, Org. Lett. 2020, 22, 2494–2499; o) J. Liu, Y. Wei, M. Shi,
Org. Chem. Front. 2021, 8, 94–100.
[5] For selected articles on transition metals catalyzed reactions of ACPs,
see: a) B. H. Oh, I. Nakamura, S. Saito, Y. Yamamoto, Tetrahedron Lett.
2001, 42, 6203–6205; b) F. López, A. Delgado, J. R. Rodríguez, L. Castedo,
J. L. Mascareñas, J. Am. Chem. Soc. 2004, 126, 10262–10263; c) S. Saito,
M. Masuda, S. Komagawa, J. Am. Chem. Soc. 2004, 126, 10540–10541;
d) B. Trillo, M. Gulías, F. López, L. Castedo, J. L. Mascareñas, Adv. Synth.
Catal. 2006, 348, 2381–2384; e) C. Aïssa, A. Fürstner, J. Am. Chem. Soc.
2007, 129, 14836–14837; f) M. Gulías, J. Durán, F. López, L. Castedo, J. L.
Mascareñas, J. Am. Chem. Soc. 2007, 129, 11026–11027; g) M. Rubin, M.
Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117–3179; h) P. A. Evans,
energy values in toluene solution are given in kcal/mol).
double bond of intermediate A generates intermediate B
through TS2 with an energy barrier of 39.0 kcal-mol, which is
the rate-determining step in the reaction. Finally, the hydroxyl
group of intermediate B is dehydrated away with another
adjacent hydrogen atom, delivering the target product 2a
through the transition state TS3 peaked at 38.3 kcal/mol. This
calculation result is in line with the experimental conditions in
which the high temperature is required for this reaction.
~
Moreover, the total G298,rxn in toluene of this reaction is –
40.5 kcal/mol overall, accounting for
favourable process.
a thermodynamically
In conclusion, we have discovered a novel thermally-
induced intramolecular [4+2] cycloaddition reaction of sulfo-
nated allylamine- or allyloxy-tethered alkylidenecyclopropanes,
giving a series of polycyclic skeleton molecules in moderate to
excellent yields with a broad substrate scope. On the basis of
control experiments and DFT calculations, a plausible reaction
mechanism has been proposed. In general, the reaction
proceeded through an intramolecular [4+2] cycloaddition and
trace of water assisted 1,3-H shift processes to afford the
desired polycyclic skeleton product. Further investigations on
expanding the applications of this synthetic method are
ongoing in our laboratory.
Acknowledgements
We are grateful for the financial support from the Strategic Priority
Research Program of the Chinese Academy of Sciences (Grant No.
XDB20000000), the National Natural Science Foundation of China
(21372250, 21121062, 21302203, 20732008, 21772037, 21772226,
21861132014 and 91956115).
Chem Asian J. 2021, 16, 1–7
5
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!