1140
J. Vesely et al. / Tetrahedron Letters 49 (2008) 1137–1140
Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org. Chem. 2003, 68,
692; (o) Shi, Y.-L.; Shi, M. Tetrahedron 2006, 62, 461; (p) Shi, Y.-L.;
Xu, Y.-M.; Shi, M. Adv. Synth. Catal. 2004, 346, 1220.
12. For an excellent review concerning organocatalytic additions of
unmodified aldehydes to nitroolefins see: Sulzer-Mosse, S.; Alexakis,
A. Chem. Commun. 2007, 3123.
4. (a) Kaye, P. T.; Musa, M. A.; Nocada, X. W.; Robinson, R. S. Org.
Biomol. Chem. 2003, 1, 1133; (b) Kaye, P. T. S. Afr. J. Sci. 2004, 100,
545; (c) Kaye, P. T.; Musa, M. A. Synthesis 2002, 2701; (d) Lesch, B.;
Bra¨se, S. Angew. Chem., Int. Ed. 2004, 43, 115; (e) Lesch, B.; Tora¨ng,
J.; Vanderheiden, S.; Bra¨se, S. Adv. Synth. Catal. 2005, 347, 555; (f)
Zhao, G.-L.; Shi, Y.-L.; Dhi, M. Org. Lett. 2005, 7, 4527; (g) Zhao,
G.-L.; Huang, J.-W.; Shi, M. Org. Lett. 2003, 5, 4737.
13. For a three-step synthesis of similar compounds starting from Baylis
Hillman products and their application as starting materials in
heterocycle synthesis see: (a) Sing, V.; Kanojiya, S.; Batra, S.
Tetrahedron 2006, 62, 10100; (b) Lee, K. Y.; Seo, J.; Kim, J. N.
Tetrahedron Lett. 2006, 47, 3913.
14. Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H. Org. Lett. 2006, 8,
2217.
5. Kamimura, A.; Gunjigake, Y.; Mitsudera, H.; Yoloyama, S. Tetra-
hedron Lett. 1998, 39, 7323.
15. Typical experimental procedure for the organocatalytic Baylis-Hillman
reactions: To a stirred mixture of (S)-proline (0.10 mmol, 40 mol %),
6. (a) Basavaiah, D.; Sharada, D. S.; Kumaragurubaran, N.; Reddy, R.
M. J. Org. Chem. 2002, 67, 7135; (b) Basavaiah, D.; Kumaraguru-
baran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85.
nitrostyrene 1 (0.50 mmol, 2.0 equiv) and DABCO (0.05 mmol,
20 mol %) in DMF 1.0 mL at 4 °C was added a,b-unsaturated
aldehyde 2 (0.25 mmol, 1.0 equiv). The reaction was stirred vigor-
ously for the time and the temperature described in Table 2. Next, the
crude product was purified by silica gel chromatography (pentane–
EtOAc-mixtures) to give the corresponding enals 3. Compound 3a E-
isomer: Colorless oil. 1H NMR (400 MHz, CDCl3): d = 9.38 (d,
J = 1.6 Hz, 1H), 7.30–7.26 (m, 5H), 6.80 (q, J = 7.2 Hz, 1H), 5.32
(dd, J = 8.8 Hz, 12.8 Hz, 1H), 5.04 (dd, J = 6.4 Hz, 12.8 Hz, 1H),
4.76–4.71 (m, 1H), 2.12 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz,
CDCl3): 194.7, 154.8, 137.7, 129.1, 127.9, 127.8, 76.6, 41.3,
15.3. HRMS (ESI): calcd for [M+Na]+(C12H13NO3) requires m/z
242.0788, found 242.0781. The enantiomeric excess was determined
by HPLC with an OD-H column (n-hexane–i-PrOH = 90:10, k =
230 nm), 1.0 mL/min; tR = faster enantiomer 20.2 min, slower enan-
tiomer 41.6 min.
7. (a) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, K.; Jang, H.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402; (b) Frank, S. A.;
Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404; (c)
Krafft, M. E.; Haxell, T. F. N. J. Am. Chem. Soc. 2005, 127, 10168.
8. (a) Shi, M.; Jiang, J.-K.; Li, C.-Q. Tetrahedron Lett. 2002, 43, 127.
9. (a) Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. 2003, 5,
3741; (b) Aroyan, C. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett.
2005, 7, 3849; (c) Vasbinder, M. M.; Imbriglio, J. E.; Miller, S. J.
Tetrahedron 2006, 62, 11450; (d) Chen, S.-H.; Hong, B.-C.; Su, C.-F.;
Sarshar, S. Tetrahedron Lett. 2005, 46, 8899.
10. Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. Angew. Chem.,
Int. Ed. 2007, 46, 1878.
´
11. Vesely, J.; Dziedzic, P.; Cordova, A. Tetrahedron Lett. 2007, 48, 6900.